Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Geheimnis der organischen Materie im Weltall auf der Spur

21.08.2015

Seit mehreren Jahren gibt es starke Indizien dafür, dass sich bereits in der Frühzeit des Universums gewaltige Mengen komplexer organischer Verbindungen in den interstellaren Wolken gebildet haben. Darauf deuten etwa 400 diffuse Absorptionsbanden (DIBs) hin, die Astronomen im Licht aus solchen Wolken nachweisen konnten. Allerdings ist die genaue Zuordnung der DIBs zu konkreten Verbindungen bislang kaum möglich. Dass es sich tatsächlich um die vermuteten Polyzyklischen Aromatischen Kohlenwasserstoffe (PAK/PAH) handeln könnte, wird jetzt von Experimenten gestützt, die am Max-Born-Institut (MBI) in Berlin gemeinsam mit internationalen Partnern durchgeführt wurden.

Mit Hilfe von ultraschnellen UV-Lasern konnten die Wissenschaftler die Dynamik der hoch angeregten Molekülzustände entschlüsseln. Unter den Kohlenwasserstoffen, die mögliche Auslöser der Absorptionsbanden sind, galten die Polyzyklischen Aromatischen Kohlenwasserstoffe als besonders vielversprechend.


Schematische Darstellung der XUV-induzierte Dynamik in PAH-Molekülen.

Abb.: MBI


Komplexe Kohlenwasserstoffe im Weltraum. Künstlerische Darstellung.

Image Credit: NASA/JPL-Caltech/T. Pyle (SSC)

Die Anwesenheit von PAK/PAH-Molekülen wurde zuvor in vielen astronomischen Objekten abgeleitet, beispielsweise in interstellare Materiewolken unserer Milchstraße, aber sogar in zehn Milliarden Jahre alter Materie aus der Frühzeit des Universums. Unter Astronomen gab es allerdings auch Zweifel an den Hypothesen, da die Lebensdauer der ungewöhnlichen Molekülzustände nicht bekannt war.

Dafür gelang jetzt den MBI-Forschern in Zusammenarbeit mit Wissenschaftlern der Universität Lyon, unterstützt von theoretischen Berechnungen von Wissenschaftlern an den Universitäten Leiden, Heidelberg und Hyderabad, der Nachweis, dass die Lebensdauer der elektronischen Zustände von kleinen bis mittelgroßen PAHs mit den Linienbreiten übereinstimmen, die in den diffuse Absorptionsbanden beobachtet werden.

In den Experimenten wurde eine Reihe von kleinen bis mittelgroßen PAH-Molekülen (Naphthalin, Anthracen, Pyren und Tetracen, die jeweils mehrere kondensierte aromatische Ringe enthalten) mit einem ultrakurzen extrem-ultravioletten Laserpuls (XUV) ionisiert.

Die Absorption eines XUV-Photons führte nicht nur zur Entfernung eines der Elektronen, sondern darüber hinaus zur elektronischen Anregung des dadurch entstandenen positiv geladenen Molekül-Ions. Die Lebensdauer dieser angeregten kationischen elektronischen Zustände wurde mit Hilfe eines zeitverzögerten Infrarot-Laserimpulses gemessen.

Sobald ein Elektron aus dem Molekül entfernt worden ist, ist die elektronische Anregung am höchsten, so dass nur ein oder wenige Infrarot-Photonen benötigt werden, um ein zweites Elektron zu entfernen. Bereits kurze Zeit später „entspannt“ sich das Ion, es werden nun mehr IR-Photonen benötigt, um ein zweites Elektron herauszuschlagen.

Mit anderen Worten, die Überwachung der Bildung von zweifach geladenen Ionen als Funktion der Verzögerungszeit zwischen den Laserimpulsen XUV und IR erlaubt die Messung der Lebensdauer der verschiedenen Zustände. Durch die Messungen, die durch theoretische High-Level-Berechnungen gestützt wurden, konnte gezeigt werden, dass die Lebenszeit der organischen PAH-Ionen im Bereich von einigen 10 Femtosekunden damit übereinstimmt, was auch in den diffusen Absorptionsbanden (DIBs) aus dem Weltall gemessen wird.

Die Experimente haben Auswirkungen auf die weitere Entwicklung der Attosekunden-Physik. Denn auch in der Chemie ist eine genaue Kenntnis der Ladungswanderung von großem Interesse, d.h., ultraschnelle Bewegungen eines Elektrons oder eines Lochs durch eine Molekülstruktur. Sie erfolgen in der unvorstellbar kurzen Zeit von Attosekunden (ein Millardstel einer Millardstel Sekunde) bis zu wenigen Femtosekunden (10-15 Sekunden).

Durch die kontrollierte Ladungswanderung könnten völlig neue Möglichkeiten zur Steuerung von chemischen Reaktionen entstehen, ein Ziel, das so alt ist wie die chemische Forschung selbst. Erste Hinweise darauf, dass Ladungswanderungen in einer Zeitskala von Attosekunden bis zu wenigen Femtosekunden kontrolliert werden können, legten Forschern der Universität Mailand im vergangenen Jahr vor.

Die PAK/PAH-Moleküle, die in den Experimenten am MBI untersucht wurden, sind die bislang größten, auf die die ultraschnelle XUV-IR-Pump-Probe-Spektroskopie angewendet wurde. Weitere Experimente dazu sind in Vorbereitung.

Nature Communications 6, DOI:10.1038/ncomms8909
XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment; A. Marciniak, V. Despré, T. Barillot, A. Rouzée, M.C.E. Galbraith, J. Klei, C.-H. Yang, C.T.L. Smeenk, V. Loriot, S. Nagaprasad Reddy, A.G.G.M. Tielens, S. Mahapatra, A. I. Kuleff, M.J.J. Vrakking & F. Lépine

Kontakt: Prof. Marc Vrakking
Max-Born-Institut (MBI)
Max-Born-Straße 2A
12489 Berlin, Germany
E-Mail: marc.vrakking@mbi-berlin.de
Tel. +49-30-6392-1200

Abb .: Schematische Darstellung des Experiments.

(a) Schematische Darstellung der XUV-induzierte Dynamik in PAH-Molekülen. Die angeregten Zustände zeigen sich in der Valenzschale des Kations durch eine von zwei Möglichkeiten: die Bildung einer Einzellochkonfiguration oder die Bildung einer Zwei-Loch-Einzelpartikel-Konfiguration, die mit steigenden Energien erfolgt (links). IP steht dabei für das Ionisationspotential. Das Kation kann durch den IR-Prüflaser ionisiert werden, vorausgesetzt, dass die nicht-adiabatische Entspannung noch nicht eingetreten ist (Mitte). Nach der Entspannung ist es nicht mehr möglich, das Kation mit dem IR-Prüflaser zu ionisieren (rechts).

(b) An Anthracen gemessene zweifarbige XUV-IR-Ionensignale als Funktion des detektierten Masse-zu-Ladung-Verhältnisses und der XUV-IR-Verzögerung. Die Nur-XUV- und die IR-Signale wurden subtrahiert. Die XUV-Pump- und die IR-Prüflaser-Impulse überlappen sich bei einer Verzögerung von null (schwarz gestrichelte Linie). Eine Rotfärbung entspricht einem Signalanstieg, während blaue Farbe Schwund anzeigt. Für positive XUV-IR-Verzögerungen wurde eine sehr schnelle Dynamik für zweifach geladene Anthracen- Ionen (A2+, m/q=89) beobachtet. Wie im Text erläutert, gibt die Messung eine nicht-adiabatische Entspannung im Anthracen-Kation (A+) wider. Die im ersten Fragment (A-C2H2+) beobachtete Dynamik wird in diesem Artikel nicht diskutiert.
Abb.: MBI

Weitere Informationen:

http://www.nature.com/ncomms/2015/150813/ncomms8909/abs/ncomms8909.html - Artikel in Nature Communications
http://www.nasa.gov/multimedia/imagegallery/image_feature_398.html - Weltraumfotomontage plus Infos

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Berichte zu: Attosekunden Forschungsverbund Geheimnis Ionen MBI Materie Nature Communications PAK XUV

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften