Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Duft der Trüffel auf der Spur

25.09.2014

Der charakteristische, etwas schweflige Geruch weißer Trüffel stammt zum großen Teil von Bodenbakterien, die der Pilz beim Wachstum mit seinen Fruchtkörpern einschließt. Das hat eine Gruppe deutsch-französischer Wissenschaftler unter Federführung der Goethe-Universität herausgefunden.

Trüffel gehören, zusammen mit Kaviar, zu den teuersten Lebensmitteln weltweit. Weil sie unterirdisch wachsen, spürt sie der Mensch mithilfe abgerichteter Hunde oder Schweine auf. Der charakteristische Geruch ist aber nicht nur für Feinschmecker interessant. Eine Gruppe deutsch-französischer Wissenschaftler unter Federführung der Goethe-Universität hat nun herausgefunden, dass der Duft weißer Trüffel zum großen Teil von Bodenbakterien stammt, die beim Wachstum von den Fruchtkörpern umschlossen werden.

Weiße Trüffel aus dem Piedmont in Italien kosten bis zu 5.000 Euro pro Kilo, schwarze Trüffel aus dem südfranzösischen Périgord bringen es auf 2.000 Euro pro Kilo. Besonders große Exemplare erreichen bei Auktionen sogar Preise von bis zu 50.000 Euro pro Kilo. Kenner suchen die kostbaren Delikatessen in der Nähe von Haselnussbäumen, Eichen und einigen Kiefer-Arten. Denn die Trüffel wachsen mit den Bäumen in Symbiose. Für Wissenschaftler sind Trüffel deshalb Modellorganismen, an denen sie die Entstehung der Symbiose zwischen Pflanzen und Pilzen untersuchen.

Die zweite wichtige Forschungsfrage betrifft den Geruch und das Aroma der Pilze. Für die Lebensmittelindustrie ist es besonders wichtig zu wissen, wie Aromen entstehen. Während Hefen und Bakterien, die beispielsweise Käse und Wein ihren Geschmack verleihen, gut erforscht sind, weiß man bisher kaum, wie das Aroma in anderen Organismen entsteht, Trüffel eingeschlossen.

In den vergangenen 10 Jahren vermuteten Forscher schon, dass Mikroorganismen, die während des Wachstums in die Fruchtkörper der Trüffel eingeschlossen werden, zu deren Aroma beitragen. „Als dann 2010 das Genom des schwarzen Perigord-Trüffels entschlüsselt wurde, meinten die Kollegen, der Pilz verfüge über genügend Gene, um sein Aroma selbst zu erzeugen“, erklärt Juniorprofessor Richard Splivallo vom Institut für Molekulare Biowissenschaften der Goethe-Universität.

Für die Studie hat das deutsch-französische Wissenschaftler-Team den weißen Trüffel Tuber borchii untersucht. Er ist in Europa heimisch, wächst inzwischen aber auch in Neuseeland und Argentinien. Die Forscher konnten nachweisen, dass Bakterien eine bestimmte Klasse flüchtiger zyklischer Schwefelverbindungen erzeugen, die einen Teil des charakteristischen Trüffelgeruchs ausmachen. Dank des leicht schwefligen Geruchs können Hunde und Schweine die Trüffel auch im Boden aufspüren.

„Unsere Ergebnisse lassen sich aber nicht auf andere Trüffelarten übertragen“, sagt Splivallo, „weil die untersuchten Verbindungen nur in dem weißen Trüffel Tuber borchii vorkommen.“ Sie nehmen deshalb künftig Verbindungen in den Blick, die im Perigord- und Piermont-Trüffel vorkommen und allen Trüffel-Arten gemeinsam sind. „Wir wollen nicht nur wissen, welcher Anteil des Trüffel-Aromas von Bakterien produziert wird. Uns interessiert auch, wie die Symbiose von Pilzen und Mikroorganismen zustande gekommen ist und welche Vorteile daraus für beide Seiten entstanden sind.“

Publikation:
Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P. (2014). Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environmental Microbiology. DOI: 10.1111/1462-2920.12521

Informationen: Junior-Prof. Richard Splivallo, Institut für Molekulare Biowissenschaften, Campus Riedberg, Tel.: (069) 798- 42193, Splivallo@bio.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.“

Mehr Informationen unter www2.uni-frankfurt.de/gu100

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics