Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Datenleitung in die Zelle versagt

21.12.2011
Forscher am Paul Scherrer Institut haben eine blockierte Rezeptorstruktur aufgeklärt

Lebende Zellen empfangen dauernd Informationen von aussen, die über Rezeptoren in das Zellinnere weitergeleitet werden. Genetisch bedingte Fehler in solchen Rezeptoren sind der Grund für zahlreiche Erbkrankheiten, darunter verschiedene hormonelle Funktionsstörungen oder Nachtblindheit.


Struktur eines Lichtrezeptors – blockiert im aktiven Zustand. Das Vitamin-A-Molekül funktioniert als Sensor für das ankommende Licht. Unten ist der Baustein markiert, der für die Blockade des Rezeptors verantwortlich ist. In hellgrau ist die Zellmembran angedeutet. Grafik: Paul Scherrer Institut/J. Standfuss

Bei einem solchen Fehler bleibt der Rezeptor im „eingeschalteten“ Zustand hängen, als wäre er dauerhaft dem äusseren Reiz ausgesetzt. Schliesslich wird er ausser Betrieb gesetzt. Forschern des Paul Scherrer Instituts ist es nun gelungen, die exakte Struktur eines im aktiven Zustand blockierten Rezeptors aufzuklären.

Eine lebende Zelle muss dauernd auf Informationen reagieren, die von aussen bei ihr ankommen. Dafür zuständig, die Information ins Innere weiterzuleiten, sind Rezeptoren, komplexe Proteinmoleküle, die in der Zellmembran sitzen. „Man kann diese Rezeptoren mit einer Türklingel vergleichen. Wenn jemand an der Tür klingelt, kann er im Haus Aktivität auslösen, ohne selbst hineinzugehen“, erklärt Xavier Deupi, Forscher am Paul Scherrer Institut. „Genauso löst ein Rezeptor chemische Vorgänge in der Zelle aus, wenn von aussen ein Reiz bei ihm ankommt. Das kann Licht sein oder auch ein Hormonmolekül, das selbst nicht in die Zelle eindringt.“ Es gibt rund achthundert solcher Rezeptoren, die für verschiedenste Reize zuständig sind.

Die kaputte Türklingel der Zelle

Die Rezeptoren kann man sich als winzige, sehr exakte biologische Maschinen vorstellen, die schon bei kleinsten Abweichungen vom Bauplan nicht richtig funktionieren. Nun ist es einer Gruppe um Jörg Standfuss am Paul Scherrer Institut gelungen, die Struktur eines mutierten und damit fehlerhaften Rezeptors zu bestimmen und so die Grundlage eines solchen Fehlers zu entschlüsseln. „Der untersuchte Rezeptor zeigte einen recht typischen Fehler – er blockiert im aktiven Zustand. Um im Bild der Klingel zu bleiben: Es gibt einen passiven Zustand, in dem die Klingel für Besucher bereit ist, und den aktiven, in dem sie tatsächlich gedrückt wird und läutet“, hält Standfuss fest. „Wenn sie aber weiterläutet, obwohl niemand mehr drückt, ist sie nicht nur nutzlos, sondern auch lästig, sodass man sie in der Regel ausser Betrieb nehmen wird.“ Das Gleiche kann in der Zelle passieren – ein Rezeptor bleibt im aktiven Zustand hängen und täuscht ein Signal vor. Schliesslich blockiert die Zelle den Rezeptor und setzt ihn so ausser Betrieb. „Das ist für die Zelle in mehrfacher Weise belastend. Zum einen fehlt der funktionelle Rezeptor und wichtige Signalwege werden damit blockiert. Zusätzlich können sich kaputte Rezeptoren aber auch bis zu einem Punkt anreichern, an dem sie giftig werden und so zum Tod der Zelle führen“, so Standfuss.

Ein falscher Buchstabe

Das untersuchte Protein verhakt sich gewissermassen in der aktiven Form und findet nicht mehr in die passive zurück. Dabei ist der Unterschied zwischen der „gesunden“ und der mutierten Form scheinbar gering: eine einzige falsche Aminosäure, also ein falscher Proteinbaustein. Im Erbgut entspricht das einem einzigen Basenpaar, gewissermassen einem einzigen Buchstaben in einer langen Bauanleitung. Dieser kleine Fehler führt aber dazu, dass ein Bauteil falsch geformt ist und die ganze Maschine nicht mehr funktioniert. Mithilfe von Untersuchungen an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts ist es den Forschern nun gelungen, den genauen Aufbau des fehlerhaften Teils zu bestimmen und so zu zeigen, wie der Fehler zustande kommt. Diese Versuche wurden an einem künstlich veränderten Protein durchgeführt, an dem sich die Prinzipien besonders gut sichtbar machen lassen.

Die untersuchten Rezeptoren gehören zur Klasse der G-Protein-gekoppelten Rezeptoren. Sie sind in die Zellmembran eingebaut und können so Informationen von aussen nach innen weiterleiten. Der Teil ausserhalb der Zelle ist jeweils für einen spezifischen Reiz empfänglich – etwa Licht oder die Ankunft eines Hormonmoleküls. Kommt ein solcher Reiz an, verändert sich die Struktur des gesamten Moleküls, sodass sich in dem Teil, der ins Zellinnere ragt, ein Freiraum bildet. In diesem Freiraum kann dann ein sogenanntes G-Protein andocken. Der Rezeptor spaltet das G-Protein in zwei Teile auf und lässt diese in die Zellflüssigkeit frei, wo sie einen bestimmten Vorgang in der Zelle auslösen. Im Normalfall formt sich der Rezeptor nach kurzer Zeit wieder zurück und ist bereit für den nächsten Reiz. Ein fehlerhafter Rezeptor hingegen verbleibt in der geöffneten Form, sodass sich immer wieder neue G-Proteine binden können. Schliesslich wird aber stattdessen ein „Arrestin“ genanntes Protein angekoppelt, das den Rezeptor blockiert und so ausser Betrieb setzt.

Krankheiten verstehen

Zahlreiche Erbkrankheiten werden durch solche kleinen Fehler im Aufbau von Rezeptoren verursacht, die wiederum auf Fehler im Erbgut zurückgehen. So ist ein wichtiges langfristiges Ziel der Forschungsarbeiten, die Veränderungen zu verstehen, die hinter verschiedenen Krankheiten stecken und damit die Voraussetzung für die Entwicklung von Therapien zu schaffen. „Am Paul Scherrer Institut betreiben wir Grundlagenforschung – wir wollen die Mechanismen hinter den Erkrankungen verstehen. Die Entwicklung der Medikamente und die klinischen Studien führt die pharmazeutische Industrie durch. Wenn es darum geht, die grundlegenden relevanten Fragen zu identifizieren arbeiten wir eng zusammen“, betont Standfuss.

Text: Paul Piwnicki

Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:
Dr. Jörg Standfuss, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41(0)56 310 2586, E-Mail: joerg.standfuss@psi.ch [Deutsch, Englisch]

Dr. Xavier Deupi, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41(0)56 310 3337, E-Mail: xavier.deupi@psi.ch [Englisch, Spanisch, Katalanisch]

Originalveröffentlichung:
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II; Xavier Deupi, Patricia Edwards, Ankita Singhal, Benjamin Nickle, Daniel Oprian, Gebhard Schertler, and Jörg Standfuss; PNAS Early Edition week of December 19, 2011; DOI : http://dx.doi.org/10.1073/pnas.1114089108

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten