Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Datenleitung in die Zelle versagt

21.12.2011
Forscher am Paul Scherrer Institut haben eine blockierte Rezeptorstruktur aufgeklärt

Lebende Zellen empfangen dauernd Informationen von aussen, die über Rezeptoren in das Zellinnere weitergeleitet werden. Genetisch bedingte Fehler in solchen Rezeptoren sind der Grund für zahlreiche Erbkrankheiten, darunter verschiedene hormonelle Funktionsstörungen oder Nachtblindheit.


Struktur eines Lichtrezeptors – blockiert im aktiven Zustand. Das Vitamin-A-Molekül funktioniert als Sensor für das ankommende Licht. Unten ist der Baustein markiert, der für die Blockade des Rezeptors verantwortlich ist. In hellgrau ist die Zellmembran angedeutet. Grafik: Paul Scherrer Institut/J. Standfuss

Bei einem solchen Fehler bleibt der Rezeptor im „eingeschalteten“ Zustand hängen, als wäre er dauerhaft dem äusseren Reiz ausgesetzt. Schliesslich wird er ausser Betrieb gesetzt. Forschern des Paul Scherrer Instituts ist es nun gelungen, die exakte Struktur eines im aktiven Zustand blockierten Rezeptors aufzuklären.

Eine lebende Zelle muss dauernd auf Informationen reagieren, die von aussen bei ihr ankommen. Dafür zuständig, die Information ins Innere weiterzuleiten, sind Rezeptoren, komplexe Proteinmoleküle, die in der Zellmembran sitzen. „Man kann diese Rezeptoren mit einer Türklingel vergleichen. Wenn jemand an der Tür klingelt, kann er im Haus Aktivität auslösen, ohne selbst hineinzugehen“, erklärt Xavier Deupi, Forscher am Paul Scherrer Institut. „Genauso löst ein Rezeptor chemische Vorgänge in der Zelle aus, wenn von aussen ein Reiz bei ihm ankommt. Das kann Licht sein oder auch ein Hormonmolekül, das selbst nicht in die Zelle eindringt.“ Es gibt rund achthundert solcher Rezeptoren, die für verschiedenste Reize zuständig sind.

Die kaputte Türklingel der Zelle

Die Rezeptoren kann man sich als winzige, sehr exakte biologische Maschinen vorstellen, die schon bei kleinsten Abweichungen vom Bauplan nicht richtig funktionieren. Nun ist es einer Gruppe um Jörg Standfuss am Paul Scherrer Institut gelungen, die Struktur eines mutierten und damit fehlerhaften Rezeptors zu bestimmen und so die Grundlage eines solchen Fehlers zu entschlüsseln. „Der untersuchte Rezeptor zeigte einen recht typischen Fehler – er blockiert im aktiven Zustand. Um im Bild der Klingel zu bleiben: Es gibt einen passiven Zustand, in dem die Klingel für Besucher bereit ist, und den aktiven, in dem sie tatsächlich gedrückt wird und läutet“, hält Standfuss fest. „Wenn sie aber weiterläutet, obwohl niemand mehr drückt, ist sie nicht nur nutzlos, sondern auch lästig, sodass man sie in der Regel ausser Betrieb nehmen wird.“ Das Gleiche kann in der Zelle passieren – ein Rezeptor bleibt im aktiven Zustand hängen und täuscht ein Signal vor. Schliesslich blockiert die Zelle den Rezeptor und setzt ihn so ausser Betrieb. „Das ist für die Zelle in mehrfacher Weise belastend. Zum einen fehlt der funktionelle Rezeptor und wichtige Signalwege werden damit blockiert. Zusätzlich können sich kaputte Rezeptoren aber auch bis zu einem Punkt anreichern, an dem sie giftig werden und so zum Tod der Zelle führen“, so Standfuss.

Ein falscher Buchstabe

Das untersuchte Protein verhakt sich gewissermassen in der aktiven Form und findet nicht mehr in die passive zurück. Dabei ist der Unterschied zwischen der „gesunden“ und der mutierten Form scheinbar gering: eine einzige falsche Aminosäure, also ein falscher Proteinbaustein. Im Erbgut entspricht das einem einzigen Basenpaar, gewissermassen einem einzigen Buchstaben in einer langen Bauanleitung. Dieser kleine Fehler führt aber dazu, dass ein Bauteil falsch geformt ist und die ganze Maschine nicht mehr funktioniert. Mithilfe von Untersuchungen an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts ist es den Forschern nun gelungen, den genauen Aufbau des fehlerhaften Teils zu bestimmen und so zu zeigen, wie der Fehler zustande kommt. Diese Versuche wurden an einem künstlich veränderten Protein durchgeführt, an dem sich die Prinzipien besonders gut sichtbar machen lassen.

Die untersuchten Rezeptoren gehören zur Klasse der G-Protein-gekoppelten Rezeptoren. Sie sind in die Zellmembran eingebaut und können so Informationen von aussen nach innen weiterleiten. Der Teil ausserhalb der Zelle ist jeweils für einen spezifischen Reiz empfänglich – etwa Licht oder die Ankunft eines Hormonmoleküls. Kommt ein solcher Reiz an, verändert sich die Struktur des gesamten Moleküls, sodass sich in dem Teil, der ins Zellinnere ragt, ein Freiraum bildet. In diesem Freiraum kann dann ein sogenanntes G-Protein andocken. Der Rezeptor spaltet das G-Protein in zwei Teile auf und lässt diese in die Zellflüssigkeit frei, wo sie einen bestimmten Vorgang in der Zelle auslösen. Im Normalfall formt sich der Rezeptor nach kurzer Zeit wieder zurück und ist bereit für den nächsten Reiz. Ein fehlerhafter Rezeptor hingegen verbleibt in der geöffneten Form, sodass sich immer wieder neue G-Proteine binden können. Schliesslich wird aber stattdessen ein „Arrestin“ genanntes Protein angekoppelt, das den Rezeptor blockiert und so ausser Betrieb setzt.

Krankheiten verstehen

Zahlreiche Erbkrankheiten werden durch solche kleinen Fehler im Aufbau von Rezeptoren verursacht, die wiederum auf Fehler im Erbgut zurückgehen. So ist ein wichtiges langfristiges Ziel der Forschungsarbeiten, die Veränderungen zu verstehen, die hinter verschiedenen Krankheiten stecken und damit die Voraussetzung für die Entwicklung von Therapien zu schaffen. „Am Paul Scherrer Institut betreiben wir Grundlagenforschung – wir wollen die Mechanismen hinter den Erkrankungen verstehen. Die Entwicklung der Medikamente und die klinischen Studien führt die pharmazeutische Industrie durch. Wenn es darum geht, die grundlegenden relevanten Fragen zu identifizieren arbeiten wir eng zusammen“, betont Standfuss.

Text: Paul Piwnicki

Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:
Dr. Jörg Standfuss, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41(0)56 310 2586, E-Mail: joerg.standfuss@psi.ch [Deutsch, Englisch]

Dr. Xavier Deupi, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41(0)56 310 3337, E-Mail: xavier.deupi@psi.ch [Englisch, Spanisch, Katalanisch]

Originalveröffentlichung:
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II; Xavier Deupi, Patricia Edwards, Ankita Singhal, Benjamin Nickle, Daniel Oprian, Gebhard Schertler, and Jörg Standfuss; PNAS Early Edition week of December 19, 2011; DOI : http://dx.doi.org/10.1073/pnas.1114089108

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research