Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Chemie explodierender Sterne

20.01.2012
Meteorit birgt Hinweise für die Bildung von Schwefelmolekülen in den Überresten einer Supernova

Forscher verstehen grundlegende chemische Abläufe in Vorläufern unseres Sonnensystems nun ein bisschen besser: Ein internationales Team um Peter Hoppe, Forscher am Max-Planck-Institut für Chemie in Mainz, hat nun mit einer sehr empfindlichen Methode Staubeinschlüsse im 4,6 Milliarden Jahre alten Meteoriten Murchison, der bereits 1969 gefunden worden war, untersucht.


Sternenstaub aus einer Supernova: Die elektronenmikroskopische Aufnahme zeigt ein Siliziumkarbid-Korn aus dem Meteoriten Murchison. Das im Durchmesser knapp einen Mikrometer große Staubteilchen stammt aus einer Supernova, wie eine Analyse von Isotopen – das sind unterschiedlich schwere Formen eines Elementes – ergeben haben. Bild: Peter Hoppe, MPI für Chemie

Die Sternenstaubkörner stammen aus einer Supernova und sind älter als unser Sonnensystem. Dabei entdeckten die Wissenschaftler chemische Isotope, die darauf hinweisen, dass sich in den Überresten explodierender Sterne Schwefelverbindungen wie Siliziumsulfid gebildet haben. Schwefelmoleküle sind zentral für zahlreiche Prozesse und letztendlich wichtig für die Entstehung von Leben.

Modelle sagten die Bildung von Schwefelmolekülen in den Überresten von explodierenden Sternen – den Supernovae – bereits voraus. Den Nachweis dafür erbrachte jetzt ein Forscherteam aus Deutschland, Japan und den USA mit Hilfe von Isotopenanalysen von Meteoriten-Sternenstaub.
Das Team um Peter Hoppe, Astrophysiker am Mainzer Max-Planck-Institut für Chemie, isolierte zunächst tausende, etwa 0,1 bis 1 Mikrometer große Siliziumkarbid-Sternenstaubkörnchen aus dem Meteoriten Murchinson, den man bereits 1969 auf der Erde fand. Die Sternenstaubkörner stammen aus einer Supernova und sind älter als unser Sonnensystem. In den Proben bestimmten die Forscher mit einem hochempfindlichen Spektrometer, der sogenannten NanoSIMS, die Isotopenverteilung. Hierbei schießt ein Ionenstrahl auf die einzelnen Sternenstaubkörner und löst aus der Oberfläche Atome heraus. Ein Spektrometer trennt sie dann nach ihrer Masse und misst die Isotopen-Häufigkeit. Isotope eines chemischen Elements besitzen die gleiche Anzahl an Protonen, aber unterschiedlich viele Neutronen.

Bei fünf Siliziumkarbid-Proben fanden die Astrophysiker eine ungewöhnliche Isotopenverteilung: Sie wiesen viele schwere Silizium- und wenig schwere Schwefelisotope nach, was nicht zu bisherigen Modellen über die Isotopenhäufigkeiten in Sternen passt. Gleichzeitig konnten sie Zerfallsprodukte von radioaktivem Titan nachweisen, welches nur in den innersten Zonen einer Supernova entstanden sein kann. Das wiederum beweist, dass die jetzt analysierten Sternenstaubkörner tatsächlich aus einer Supernova stammen.

Ein Beleg für das Modell von der Chemie in Supernova-Überresten

„Die von uns gefundenen Sternenstaubkörner sind extrem selten. Bezogen auf das gesamte Meteoritenmaterial machen sie nur etwa den 100 Millionstel Teil aus. Dass wir sie gefunden haben, ist großer Zufall – besonders, da wir eigentlich auf der Suche nach Siliziumkarbid-Sternenstaub mit isotopisch leichtem Silizium waren“, sagt Peter Hoppe. „Die Signatur mit isotopisch schwerem Silizium und leichtem Schwefel kann nur dadurch plausibel erklärt werden, dass in den innersten Zonen der Überreste einer Supernova Siliziumsulfid-Moleküle gebildet wurden.“ Anschließend wurden die Sulfid-Moleküle von sich bildenden Siliziumkarbid-Kristallen umschlossen. Diese Kristalle sind dann vor etwa 4,6 Milliarden Jahren in den solaren Urnebel gelangt und wurden in die entstehenden Planeten und Planetoiden eingebaut, von denen auch der Meteorit Murchison stammt.

Mit Hilfe von Infrarot-Spektren hat man schon Kohlenmonoxid und Siliziumoxid in den Überresten von Supernova-Explosionen nachgewiesen. In Modellen wurde zwar auch die Bildung von Schwefelmolekülen schon vorausgesagt, konnte aber bisher nicht bewiesen werden. Die Messungen am Siliziumkarbid-Sternenstaub bestätigen nun die Vorhersagen, nach denen in den inneren Zonen des Supernova-Auswurfmaterials einige Monate nach der Explosion bei Temperaturen von mehreren Tausend Grad Celsius Siliziumsulfid-Moleküle entstehen.
Der untersuchte Meteorit verdankt seinen Namen der australischen Stadt Murchison, in der er bereits 1969 gefunden wurde. Für Astronomen ist er ein unerschöpfliches Tagebuch zur Entstehung unseres Sonnensystems, da er seit seiner Bildung nahezu unverändert blieb. Neben den Sternenstaub-Einschlüssen aus dem Auswurf von Supernovae transportierte Murchison auch Staub auf die Erde, der sich im Wind Roter Riesensterne gebildet hat. Durch weitere Analysen hoffen die Forscher noch mehr über den Ursprung der Sterne zu lernen, aus denen sie entstanden sind.

Originalveröffentlichung:
Peter Hoppe, Wataru Fujiya und Ernst Zinner
Sulfur molecule chemistry in supernova ejecta recorded by silicon carbide stardust
The Astrophysical Journal Letters, published online, 12. Januar 2012

Kontakt:
Dr. Peter Hoppe
Abteilung Partikelchemie
Max-Planck-Institut für Chemie
Tel: +49-6131-305 5300
E-Mail: peter.hoppe@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Weitere Informationen:
http://www.mpic.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten