Vom Bleistift zum Diamanten – Wie aus Kohlenstoff „superharter Graphit“ entsteht

TU Dresden/M_carbon<br>

Allein die Anordnung der Kohlenstoffatome ist die Ursache für die extrem unterschiedlichen Eigenschaften. Forscher um Dr. Stefano Leoni der Technischen Universität Dresden, der Stony Brook University in den U.S.A. und der Staatlichen Universität Moskau in Russland haben die Struktur einer neuen Kohlenstoffkonstruktion, des superharten Graphits, mit Hilfe einer Computersimulation entwickelt.

Die Wissenschaft ist schon lange auf der Suche nach neuen Kohlenstoffformen. So haben in den vergangene Jahren Fullerene (Kohlenstoffbälle), winzige Kohlenstoffröhrchen oder Graphen, eine extrem dünne Kohlenstoffschicht, die die zukünftige Elektronik revolutionieren wird, Schlagzeilen gemacht.

Jeder weiß, dass Diamant entsteht, wenn man Graphit einer hohen Temperatur und einem hohem Druck aussetzt. Wird das Experiment jedoch bei Raumtemperatur durchgeführt, entsteht ebenfalls ein transparenter, harter Stoff, der kein Diamant ist, sondern „superhartes Graphit“ genannt wird. Das Experiment wurde auch in jüngster Zeit mehrmals wiederholt. Für eine strukturelle Bestimmung reichte die Auflösung bisher nie.

Dr. Stefano Leoni, Wissenschaftler der Arbeitsgruppe Theoretische Chemie des Bereiches Physikalische Chemie und Elektrochemie der TU Dresden, und seine Kollegen nutzten eine neue leistungsstarke Computersimulationsmethode, auch bekannt als Transition Path Sampling, um verschiedene Kohlenstoffformen vorherzusagen. Mit besonders leistungsstarken Algorithmen kann ausgerechnet werden, welche Kristallstruktur unter bestimmten Temperatur- und Druckbedingungen entstehen und existieren kann.

Ein erster Vorschlag kam von Prof. Artem Oganov (Stony Brook Universität, U.S.A.), indem er seine so genannte „evolutionäre Methode“ einsetzte. Der in der Computersimulation neugeborene M-Kohlenstoff passte perfekt zu den Daten der Graphit-Experimente. Der Durchbruch gelang, indem man, anstatt die Computersimulationen auf mögliche Endprodukte des Experiments auszurichten, die mechanistischen Schritte der Entstehung der neuen Kohlenstoffform aufzuklären versuchte.

Die Forscher wählten aus den Daten den besten Kandidaten aus – die Kohlenstoffform, die energetisch am günstigsten entstehen kann. „Wenn man die Kohlenstoffkandidaten gegeneinander antreten lässt, entspricht der Gewinner dem tatsächlichen Endprodukt der kalten Kompression von Graphit. Selbstverständlich bleiben die anderen Kohlenstoffmodifikationen allgemeinmögliche Kandidaten. Die Simulationen zeigen allerdings, dass unter den experimentellen Bedingungen, die zur Entdeckung dieses neuen Kohlenstoffes führten, ausschließlich M-Kohlenstoff entstehen kann.“, kommentiert Stefano Leoni die Ergebnisse.

„Was für interessante, technologierelevante Eigenschaften dieser M-Kohlenstoff mit sich bringen wird, wissen wir noch nicht. Aber, wie oft in der Wissenschaft, kann sich eine Kuriosität rasch in eine fundamentale Entdeckung entwickeln. Was der Buchstabe „M“ alles an Überraschungen birgt, bleibt allerdings noch zu entdecken.“

Originalpublikation: Understanding the nature of „superhard graphite“, Scientific Reports 2 (nature), Article number: 471, doi:10.1038/srep00471

Informationen für Journalisten:
PD Dr. Stefano Leoni, TU Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Physikalische Chemie I, Tel. 0351 463-39449, Stefano.Leoni@chemie.tu-dresden.de,
TU Dresden, Kim-Astrid Magister, Tel. 0351 463-32398,
pressestelle@tu-dresden.de

Media Contact

Kim-Astrid Magister Technische Universität Dresden

Weitere Informationen:

http://www.tu-dresden.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer