Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blackout im Zellkraftwerk

14.01.2013
Defekte im Erbgut von Mitochondrien führen zu einer Reihe von Erkrankungen, weil die „Zellkraftwerke“ dann nicht mehr genug Energie bereitstellen können.
Davon betroffen sind häufig Muskeln und Gehirnzellen. Ein Forscher-Team unter Federführung des Universitätsklinikums Bonn und der TU München entdeckte nun bei Patienten Mutationen eines bislang unbekannten Gens, das bei der Vervielfältigung des Mitochondrien-Erbguts eine Schlüsselrolle spielt. Damit kann künftig diese Erkrankung besser diagnostiziert werden. Die Ergebnisse sind nun im renommierten Fachjournal “Nature Genetics” erschienen.

Mitochondrien sind die Kraftwerke in lebenden Zellen, die die nötige Energie bereitstellen. Sie besitzen eine eigene Form der DNA, die ringförmig geschlossen ist. Ist diese Blaupause der Mitochondrien-Erbsubstanz fehlerhaft, kommt es zu Störungen des Stoffwechsels. „Da Gehirn- und Muskelzellen besonders viel Energie brauchen, sind sie von solchen Mutationen häufig intensiv betroffen“, berichtet die Erstautorin der Studie, Privatdozentin Dr. Cornelia Kornblum, Leiterin der Neuromuskulären Ambulanz an der Klinik und Poliklinik für Neurologie des Bonner Universitätsklinikums.
Die genetisch verursachten Störungen der Mitochondrien zählen zu den seltenen Erkrankungen, die weniger als fünf von 10.000 Menschen betreffen. Das Universitätsklinikum Bonn hat mit dem „Zentrum für seltene Erkrankungen Bonn“ (ZSEB) eine zentrale, interdisziplinäre Einrichtung für Patienten geschaffen.

Gentests schlossen sämtliche bekannten Mutationen aus

Über das ZSEB und die Muskelambulanz behandelte Dr. Kornblum eine betroffene Familie, die unter einer Lähmung der Augenmuskeln litt. Damit verbunden waren auch Muskelschwund und Störungen der Atemfunktion. Die Oberärztin entnahm bei den Patienten Muskelgewebe, an dem Mitochondrien-Erkrankungen diagnostiziert werden. Die Forscher des Bonner Universitätsklinikums wiesen an den Funktionseinbußen und genetischen Veränderungen des Gewebes nach, dass es sich um eine vererbte Störung der Mitochondrien handelte. „Anhand von Gentests wurden jedoch sämtliche bekannten Mutationen ausgeschlossen, die mit einer solchen Erkrankung zusammenhängen“, berichtet Prof. Dr. Wolfram Kunz von der Abteilung Neurochemie des Life & Brain Zentrums der Universität Bonn.

Forscher entdecken einen Defekt in einem neuen Gen

Es musste also eine Erbgutveränderung geben, die noch nicht bekannt war. Wissenschaftler um Dr. Holger Prokisch vom Institut für Humangenetik der TU München und dem Helmholtz-Zentrum München verglichen daraufhin den kodierenden Anteil der DNA der Patienten mit der von gesunden Personen - und entdeckten Mutationen in einem bisher noch nicht charakterisiertem Gen: „c20orf72“. „Die Mutation in dem Gen auf Chromosom 20 sprachen für einen Funktionsverlust“, berichtet Dr. Prokisch. Das Gen kodiert ein wichtiges Enzym, das von der Forschergruppe Mitochondrial Genome Maintenance Exonuclease 1 (MGME1) benannt wurde. MGME1 spielt bei der Vervielfältigung der mitochondrialen DNA eine wesentliche Rolle. In dieses wissenschaftliche Puzzle passten die Ergebnisse von Dr. Michal Minczuk von der MRC Mitochondrial Biology Unit in Cambridge, der dieses Gen zuvor an Zellmodellen untersucht hatte. Nach der Zusammenführung sämtlicher Ergebnisse der beteiligten Forscher zeigte sich, dass die Mutationen auf dem jetzt entdeckten Gen zu Störungen bei der Vervielfältigung der Mitochondrien-DNA und vermutlich auch zu Einbußen bei den Reparaturmechanismen führen.

Insgesamt wurden drei Familien mit Erkrankten untersucht

Die Münchner Forscher fügten eine künstlich hergestellte, intakte Variante des Gens in Hautzellen der Patienten ein. „In Bonn konnten wir daraufhin nachweisen, dass die Mitochondrien der Patientenzellen wieder funktionsfähig waren“, berichtet Prof. Kunz. „Damit war ein Beweis erbracht, dass wir das für die Funktionsstörung verantwortliche Gen gefunden haben.“ Insgesamt untersuchten die Wissenschaftler zwei Familien und eine Einzelperson, bei denen die spezielle Form einer mitochondrialen Erkrankung auftrat.

Hoffnung auf bessere Diagnosen

Die Forscher haben in einer außergewöhnlichen internationalen Teamleistung eine Erkrankung auf ein neues Gen zurückgeführt, zwei Mutationen entdeckt und damit auch Perspektiven für die Behandlung von an einer seltenen Krankheit leidenden Patienten eröffnet. „Diese Ergebnisse aus der Grundlagenforschung helfen nicht nur, unser Verständnis von der Entstehung von Krankheiten zu verbessern“, sagt Dr. Kornblum. „Wir können damit Patienten mit einem solchen Gendefekt viel besser diagnostizieren.“ Denn solche seltenen Erkrankungen werden oft erst spät erkannt, weshalb die Betroffenen häufig eine Ärzte-Odyssee durchlaufen.

Publikation: Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease, “Nature Genetics”, DOI: 10.1038/ng.2501

Kontakt:

Prof. Dr. Wolfram S. Kunz
Abteilung Neurochemie
Klinik für Epileptologie und Life & Brain Zentrum
Tel. 0228/6885290
E-Mail: Wolfram.Kunz@ukb.uni-bonn.de

Privatdozentin Dr. med. Cornelia Kornblum
Klinik und Poliklinik für Neurologie
Universitätsklinikum Bonn
Tel. 0228/28716805
E-Mail: cornelia.kornblum@ukb.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de
http://ukb.uni-bonn.de/zseb

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics