Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Turbulente Bakterien

25.11.2015

Bakterienkulturen in Flüssigkeiten zeigen komplexe Bewegungsmuster mit einem hohen Grad an Selbstorganisation, die Turbulenzen ähneln. Zur deren Beschreibung müssen die bisherigen mathematischen Modelle zur Turbulenz erweitert werden.

Turbulenzen und Verwirbelungen gibt es nicht nur in der Luft oder in Flüssen: Auch Bakterien erzeugen kollektive Bewegungsmuster, die turbulenten Strömungen ähneln, wenn sie in genügend großer Zahl frei in Flüssigkeiten schwimmen.


Kollektive Bewegungsmuster: Bakterien in einer Suspension. Foto: Madeleine Opitz

Ein Team aus München und Kalifornien, bestehend aus Dr. Vasil Bratanov, Professor Frank Jenko und Professor Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik an der LMU, hat nun das Strömungsverhalten derartiger lebender Systeme untersucht und zeigt, dass es sich um eine neue Klasse turbulenter Strömungen mit einem hohen Grad an Selbstorganisation handelt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin PNAS.

Turbulenz ist ein fundamentales und in der Natur weit verbreitetes Phänomen, dessen theoretische Beschreibung eine der größten Herausforderungen der modernen Physik ist.

Eine Kenngröße für das Auftreten von Turbulenzen ist die Reynoldszahl, die das Verhältnis von Trägheits- zu Zähigkeitskräften angibt. „Normalerweise treten Turbulenzen bei hohen Reynoldszahlen auf“, erklärt Frey. „Bakteriensuspensionen haben eine sehr niedrige Reynoldszahl, aber überraschenderweise zeigen sie trotzdem wirbelige Muster, die turbulenten Strömungen ähneln“.

Selbstantrieb ändert alles

Möglich ist dies, weil die bakterielle Suspension einen inneren Antrieb hat: Die Bakterien bewegen sich mithilfe von Geißeln fort, die von zellulären molekularen Motoren bewegt werden. „Dieser innere Antrieb ändert alles“, sagt Frey.

„Dadurch entsteht eine neue Klasse von Turbulenz, bei der die Energiezufuhr auf der Ebene einzelner Teilchen lokal innerhalb der Suspension erfolgt.“ Im Gegensatz dazu entstehen „normale“ Turbulenzen, wenn Energie zunächst großskalig zugeführt wird und sich dann auf immer kleineren Skalen auswirkt – etwa wenn Wind die Meeresoberfläche in Bewegung bringt und Wellen entstehen.

Solche klassischen Turbulenzen lassen sich mathematisch mit der sogenannten Navier-Stokes-Gleichung beschreiben. Für die neuen Turbulenzen reicht diese Gleichung allerdings nicht aus: Hier spielen die biologischen Eigenschaften der Bakterien eine Rolle, die die Stärke des inneren Antriebs beeinflussen.

„Dieses neue System ist viel reichhaltiger als das klassische Konzept, da die Instabilität durch den inneren Antrieb in die mathematische Beschreibung eingehen muss“, sagt Frey. Die Wissenschaftler konnten nun zeigen, dass eine erweiterte Navier-Stokes-Gleichung zur Beschreibung bakteriellen Bewegungen in der Suspension zu neuartigen turbulenten Zuständen führt.

„Damit haben wir eine Methode entwickelt, die auf zahlreiche Systeme anwendbar ist, die dadurch charakterisiert sind, dass die einzelnen Teilchen sich durch einen Selbstantrieb bewegen“, sagt Frey. „Dies kann das Verständnis der Physik aktiv getriebener Systeme entscheidend voranbringen.“

Publikation:
New class of turbulence in active fluids
Vasil Bratanov, Frank Jenko, and Erwin Frey
PNAS 2015
http://www.pnas.org/content/early/2015/11/20/1509304112

Kontakt:
Prof. Dr. Erwin Frey
Lehrstuhl für Statistische und Biologische Physik der LMU
E-Mail: frey@lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt
18.06.2018 | Universität Bern

nachricht Umwandlung von nicht-neuronalen Zellen in Nervenzellen
18.06.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics