Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Turbulente Bakterien

25.11.2015

Bakterienkulturen in Flüssigkeiten zeigen komplexe Bewegungsmuster mit einem hohen Grad an Selbstorganisation, die Turbulenzen ähneln. Zur deren Beschreibung müssen die bisherigen mathematischen Modelle zur Turbulenz erweitert werden.

Turbulenzen und Verwirbelungen gibt es nicht nur in der Luft oder in Flüssen: Auch Bakterien erzeugen kollektive Bewegungsmuster, die turbulenten Strömungen ähneln, wenn sie in genügend großer Zahl frei in Flüssigkeiten schwimmen.


Kollektive Bewegungsmuster: Bakterien in einer Suspension. Foto: Madeleine Opitz

Ein Team aus München und Kalifornien, bestehend aus Dr. Vasil Bratanov, Professor Frank Jenko und Professor Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik an der LMU, hat nun das Strömungsverhalten derartiger lebender Systeme untersucht und zeigt, dass es sich um eine neue Klasse turbulenter Strömungen mit einem hohen Grad an Selbstorganisation handelt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin PNAS.

Turbulenz ist ein fundamentales und in der Natur weit verbreitetes Phänomen, dessen theoretische Beschreibung eine der größten Herausforderungen der modernen Physik ist.

Eine Kenngröße für das Auftreten von Turbulenzen ist die Reynoldszahl, die das Verhältnis von Trägheits- zu Zähigkeitskräften angibt. „Normalerweise treten Turbulenzen bei hohen Reynoldszahlen auf“, erklärt Frey. „Bakteriensuspensionen haben eine sehr niedrige Reynoldszahl, aber überraschenderweise zeigen sie trotzdem wirbelige Muster, die turbulenten Strömungen ähneln“.

Selbstantrieb ändert alles

Möglich ist dies, weil die bakterielle Suspension einen inneren Antrieb hat: Die Bakterien bewegen sich mithilfe von Geißeln fort, die von zellulären molekularen Motoren bewegt werden. „Dieser innere Antrieb ändert alles“, sagt Frey.

„Dadurch entsteht eine neue Klasse von Turbulenz, bei der die Energiezufuhr auf der Ebene einzelner Teilchen lokal innerhalb der Suspension erfolgt.“ Im Gegensatz dazu entstehen „normale“ Turbulenzen, wenn Energie zunächst großskalig zugeführt wird und sich dann auf immer kleineren Skalen auswirkt – etwa wenn Wind die Meeresoberfläche in Bewegung bringt und Wellen entstehen.

Solche klassischen Turbulenzen lassen sich mathematisch mit der sogenannten Navier-Stokes-Gleichung beschreiben. Für die neuen Turbulenzen reicht diese Gleichung allerdings nicht aus: Hier spielen die biologischen Eigenschaften der Bakterien eine Rolle, die die Stärke des inneren Antriebs beeinflussen.

„Dieses neue System ist viel reichhaltiger als das klassische Konzept, da die Instabilität durch den inneren Antrieb in die mathematische Beschreibung eingehen muss“, sagt Frey. Die Wissenschaftler konnten nun zeigen, dass eine erweiterte Navier-Stokes-Gleichung zur Beschreibung bakteriellen Bewegungen in der Suspension zu neuartigen turbulenten Zuständen führt.

„Damit haben wir eine Methode entwickelt, die auf zahlreiche Systeme anwendbar ist, die dadurch charakterisiert sind, dass die einzelnen Teilchen sich durch einen Selbstantrieb bewegen“, sagt Frey. „Dies kann das Verständnis der Physik aktiv getriebener Systeme entscheidend voranbringen.“

Publikation:
New class of turbulence in active fluids
Vasil Bratanov, Frank Jenko, and Erwin Frey
PNAS 2015
http://www.pnas.org/content/early/2015/11/20/1509304112

Kontakt:
Prof. Dr. Erwin Frey
Lehrstuhl für Statistische und Biologische Physik der LMU
E-Mail: frey@lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics