Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bio statt Chemie – Polyesterfasern umweltfreundlich veredeln

13.11.2012
DBU fördert biologisches Verfahren zum Behandeln von Oberflächen synthetischer Textilien mit 510.000 Euro

Sie stecken in Kleidern, Deko- und Sportartikeln: Polyesterfasern. Durch ihre besonderen Eigenschaften sind sie vielseitig verwendbar und gehören daher weltweit zu den wichtigsten Chemiefasern.

„Um ihre Eigenschaften zu erweitern oder verbessern, werden sie veredelt. Das ist immer verbunden mit einem hohen Chemikalien-, Strom- und Wasserverbrauch. Umso wichtiger ist es, chemische Verfahren durch umweltfreundlichere zu ersetzen“, sagt Dr.-Ing. E. h. Fritz Brickwedde, Generalsekretär der Deutschen Bundesstiftung Umwelt (DBU).

„Wir wollen ein System entwickeln, das Polyesteroberflächen biologisch modifiziert und dabei die Faserqualität verbessert. Auf dieser Basis soll auch ein digitales Druckverfahren getestet werden, das eine umweltfreundliche Alternative zu anderen Techniken bietet“, erläutert Prof. Dr. Wolfgang Zimmermann vom Lehrstuhl für Mikrobiologie und Bioverfahrenstechnik des Instituts für Biochemie der Universität Leipzig. Die DBU fördert das Projekt mit 510.000 Euro.

„Für das Veredeln von Polyestergarnen wird in einigen Fällen bis zu einem Kilo Chemikalien pro Kilo Textil eingesetzt. Der Wasserverbrauch ist enorm, das Abwasser stark belastet. Auch führen chemische Prozesse, die häufig bei hohen Temperaturen ablaufen müssen, zu Einbußen in der Faserqualität“, so Zimmermann. Gemeinsam mit dem Biotechnologie-Unternehmen evocatal aus Düsseldorf und der Saxion University of Applied Sciences aus Enschede solle nun ein biologisches, wirtschaftliches und milderes Verfahren zum Veredeln von Kunststofffasern entwickelt werden, das den hohen Verbrauch von Chemikalien, Wasser und Strom senkt – ohne dabei die Qualität zu beeinträchtigen.

Bevor die Gewebe im weiteren Herstellungsprozess zum Beispiel gefärbt oder bedruckt werden, müssten die Oberflächeneigenschaften der Fasern verbessert werden. „Für einen biologischen Prozess eignen sich spezielle Enzyme. Die müssen wir so optimieren, dass sie mindestens so wirkungsvoll sind wie Chemikalien. Nur so wäre das biologische Verfahren dann auch für die industrielle Produktion geeignet.“ Zudem müsse das Enzym – ein sogenannter Biokatalysator, der chemische Reaktionen einleiten, beschleunigen und lenken kann, ohne dabei selbst verbraucht zu werden – eine gewisse Stabilität vorweisen: Je länger es im Veredlungsprozess eingesetzt werden könne, desto umweltfreundlicher und wirkungsvoller sei das neue Verfahren. Ein weiterer Vorteil sei zudem, dass bei der Biokatalyse im Vergleich zu chemischen Prozessen niedrigere Wassertemperaturen ausreichten – das spare Strom und schone die Fasern. Zum Bedrucken der Textilien eigne sich ein umweltfreundliches Tintenstrahldrucksystem, das eine Alternative zu herkömmlichen Verfahren biete. „Da der digitale Druck nur auf modifizierten Oberflächen beste Ergebnisse liefert, wäre er mit dem biologischen Veredlungsverfahren gut kombinierbar“, so Zimmermann.

Das biologische Verfahren zum Veredeln von Kunststofffasern soll in Zukunft innovative Textilien umweltfreundlich herstellen. „Hier eröffnet sich mit der Textilindustrie für die Biotechnologie ein weiterer Anwendungsbereich. Es gibt viel Potenzial, durch neue Entwicklungen und Verfahren die Umwelt zu entlasten“, sagt DBU-Experte Dr. Hans-Christian Schaefer.

Franz-Georg Elpers | DBU-Presseabteilung
Weitere Informationen:
http://www.dbu.de/123artikel33731_335.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie