Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bio-Signatur der Tuberkulose

22.03.2011
Max-Planck-Forscher finden Biomarker, mit denen sie Tuberkulose-Patienten identifizieren können

Der Tuberkulose-Erreger ist hoch-infektiös, aber nicht sehr effektiv: Weltweit tragen rund 2 Milliarden Menschen das Bakterium Mycobacterium tuberculosis in sich, aber nur bei jedem Zehnten davon bricht die Krankheit nach der Infektion aus. Niemand weiß, wer erkrankt und wer nicht.


Eine Fresszelle, ein spezialisiertes weißes Blutkörperchen (grün), ist im Begriff, Tuberkulose-Bakterien (orange) in sich einzuschließen und zu verdauen. Geschützt durch eine besonders widerstandsfähige Zellwand können die Erreger jedoch in den Fresszellen jahrelang überleben und bei einer Schwächung des Immunsystems wieder freigesetzt werden. © MPI für Infektionsbiologie/Volker Brinkmann

Deshalb suchen Wissenschaftler nach biologischen Markern, mit denen sie die Anfälligkeit für Tuberkulose vorhersagen können. Forscher vom Max-Planck-Institut für Infektionsbiologie in Berlin haben nun mehrere Kandidaten für solche Biomarker entdeckt. Sie verglichen die Genaktivität zwischen Tuberkulose-Patienten und latent mit dem Erreger infizierten Menschen. Demnach kann eine Tuberkulose-Infektion die Aktivität von fast 2000 Genen des Menschen verändern. Darunter sind Gene, die die Aktivität des Immunsystem regulieren und das Selbstmord-Programm von Immunzellen steuern.

Bislang sind keine Biomarker bekannt, die den Verlauf einer Tuberkulose-Infektion anzeigen. „Dies ist einer der Gründe, warum die Entwicklung neuer Medikamente und Impfstoffe gegen Tuberkulose so schwierig ist“, sagt Stefan Kaufmann vom Max-Planck-Institut für Infektionsbiologie. Als Biomarker eignen sich Substanzen, die im Körper leicht nachweisbar sind. Die Max-Planck-Forscher haben deshalb Blutproben von Tuberkulose-infizierten und gesunden Menschen aus Südafrika analysiert und die Genaktivität der darin enthaltenden Blutzellen mittels RNA-Screening gemessen. Die Arbeiten mit Partnern aus Afrika, den USA und Europa werden von der Bill und Melinda Gates Stiftung unterstützt.

Im Vergleich zu latent infizierten Patienten unterscheiden sich bei erkrankten Tuberkulose-Patienten 1935 Gene in ihrer Aktivität. Die größten Unterschiede konnten die Berliner Forscher dabei beim Fc Gamma Rezeptor feststellen. Der Rezeptor sitzt auf der Oberfläche von Immunzellen und sorgt dafür, dass die Zellen Antikörper-beladene Bakterien erkennen und beseitigen können. Im Blut von erkrankten Tuberkulose-Patienten sind seine Werte deutlich höher als bei latent infizierten oder nicht infizierten Gesunden.

Ähnlich wie der Fc Gamma Rezeptor besitzen vier weitere Gene ein für latente Infektionen charakteristisches Aktivitätsprofil. Mit diesen fünf Biomarkern konnten die Forscher Tuberkulose-Patienten mit 94 prozentiger und latent infizierte Gesunde mit 97 prozentiger Sicherheit diagnostizieren. „Diese Gene bilden eine Art Signatur für Tuberkulose. Sie können künftig als Marker dafür dienen, ob ein Patient krank ist oder lediglich Tuberkulose-Bakterien in sich trägt, ohne krank zu sein. Langfristig möchten wir natürlich eine Signatur definieren, die eine Voraussage zulässt, ob ein latent infizierter Gesunder später an Tuberkulose erkranken wird oder nicht“, hofft Stefan Kaufmann. Allerdings müssen die Kandidaten zuvor noch bei Menschen unterschiedlicher ethnischer Herkunft getestet werden. Denn die Aktivität einzelner Gene kann sich bei Tuberkulose-Patienten anderer Abstammung unterscheiden. Allerdings hatte die Gruppe in früheren Untersuchungen ein ähnliches Muster bei Europäern festgestellt.

Die Analyse der Genaktivität zeigt zudem, dass nur ein Immunsystem im Gleichgewicht die Tuberkulose-Bakterien unter Kontrolle halten kann. Gerät das Immunsystem aus der Balance, wird aus einer latenten Tuberkulose-Infektion eine akute Erkrankung. So sind bei Tuberkulose-Patienten eine bestimmte Gruppe von Killerzellen sowie so genannte Apoptose-Gene weniger aktiv, die das Selbstmord-Programm von Zellen steuern. Möglicherweise entgehen die Erreger auf diese Weise der Vernichtung durch die Immunabwehr.

Ansprechpartner
Prof. Dr. Dr. h. c. Stefan H.E. Kaufmann
Max-Planck-Institut für Infektionsbiologie, Berlin
Telefon: +49 30 28460-500
Fax: +49 30 28460-501
E-Mail: kaufmann@mpiib-berlin.mpg.de
Dr. Sabine Englich
Max-Planck-Institut für Infektionsbiologie, Berlin
Telefon: +49 30 28460-142
Fax: +49 30 28460-270
E-Mail: englich@mpiib-berlin.mpg.de
Originalveröffentlichung
J Maertzdorf, D Repsilber, SK Parida, K Stanley, T Roberts, G Black, G Walzl and SHE Kaufmann
Human gene expression profiles of susceptibility and resistance in tuberculosis
Genes and Immunity (2011) 12, 15–22

| Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1242915/biosignatur_tuberkulose

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Gehirnregion vermittelt Genuss am Essen
22.08.2017 | Max-Planck-Institut für Neurobiologie

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik