Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einem zentralen Regulator der Zellteilung und Tumorentwicklung auf die Schliche gekommen

02.05.2002


Krebs entwickelt sich dort, wo die Teilung von Zellen außer Kontrolle geraten ist. Die Zellteilung wird durch Proteine reguliert, deren Bildung durch Gene gesteuert wird. Wesentliche Erkenntnisse in der heutigen Krebsforschung liefern deshalb Studien zur Aktivierung oder Inaktivierung von Genen in Tumorzellen. Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried haben nun 476 verschiedene Gene identifiziert, die alle durch ein Protein reguliert werden. Das sogenannte c-MYC Protein bindet an die DNA der Zelle und aktiviert Gene, die für die Synthese von Proteine zur Unterstützung des Krebswachstums notwendig sind, z.B. Proteine für die Zellteilung. In der neuesten Ausgabe des renommierten Journals der Amerikanischen Akademie der Wissenschaften (Proceedings of the National Academy of Sciences of the United States of America, PNAS, 30. April 2002) veröffentlichen Antje Menssen und Heiko Hermeking ihre Ergebnisse.



Zellen werden durch Signalproteine, die an die Zelloberfläche binden, zur Zellteilung angeregt. Dabei werden Signale über verschiedene Signalketten bis in den Zellkern weitergeleitet, um dort die Abschrift der Gene auf der DNA und damit auch die Synthese von Proteinen zu initiieren, die bei der Neubildung und Neuorganisation von Zellen benötigt werden. Dies können z.B. Gene zur Regulation der Proteinsynthese sein oder Proteine, die dafür sorgen, dass neugebildete Proteine die richtige drei-dimensionale Faltung erhalten; eine Voraussetzung für einen fehlerfreien Einsatz im Zellstoffwechsel. Schon länger ist bekannt, dass das für die Bildung des c-MYC-Proteins verantwortliche c-MYC-Gen bei Tumoren durch Signalketten aktiviert wird. Es ist in fast allen menschlichen Tumoren aktiv. Es muss demnach eine Schlüsselrolle in der Entstehung und Entwicklung von Tumoren haben. Einen wichtigen Beitrag zum Verständnis dieser Schlüsselrolle lieferten nun Menssen und Hermeking, indem sie die Gene ausfindig machten, die durch das c-MYC-Protein aktiviert werden. Diese Gene dienen der Entwicklung vieler Wirkstoffziele für die Behandlung von Tumor-Erkrankungen oder für die Unterdrückung der Neubildung von Blutgefäßen zur Versorgung von Krebszellen. Mit Hilfe der sogenannten SAGE-Methode, konnten die Wissenschaftler der Arbeitsgruppe "Molekulare Onkologie" am Martinsrieder Institut für Biochemie 476 c-MYC-regulierte Gene identifizieren. SAGE, die "Serielle Analyse der Genexpression", ermöglicht den gleichzeitigen Nachweis aller Genprodukte (mRNA) in einer Zelle siehe auch

... mehr zu:
»Gen »Protein »Zellteilung

www.sagenet.org).

Entwickelt wurde die SAGE-Methode 1995 am Oncology Center der Johns Hopkins Universität in Baltimore, USA. Nach seiner Doktorarbeit erlernte dort Heiko Hermeking während eines Forschungsaufenthalts bei Bert Vogelstein und Ken Kinzler diese Technik und war einer ihrer ersten Anwender. SAGE beruht auf einer quantitativen Analyse von kurzen Nukleinsäure-Abschnitten, die aus Genprodukten isoliert werden und durch Computermodelle mit bereits bekannten Gensequenzen verglichen werden. Hermeking, seit knapp zwei Jahren wieder zurück in Deutschland, gilt als einer der wenigen SAGE-Experten hierzulande und wendet die Technik jetzt erfolgreich als Leiter einer eigenen Forschergruppe am Max-Planck-Institut für Biochemie an. Erstmals konnte er damit zusammen mit seiner Mitarbeiterin Antje Menssen eine komplette Übersicht der Gene erstellen, die durch das c-MYC-Protein aktiviert oder unterdrückt werden. Die gesamte Liste aller Gene stellen die beiden Wissenschaftler nun der Öffentlichkeit zur Verfügung (www.mpg.biochem.de/hermeking). Zudem konnte Dr. Menssen zeigen, dass das c-MYC Protein direkt an regulatorische Bereiche der aktivierten Gene bindet. Einige der von Menssen und Hermeking identifizierten Gene sind bereits bekannte Ziele (Targets) für die Entwicklung von Tumortherapeutika. So z. B. das Gen für die Cyclin-abhängige Kinase 4, die verstärkt in Darmkrebszellen und anderen Tumorarten gefunden wird. Zudem ist eine Substanz, welche Tumor-Neovaskularisierung durch Hemmung eines der c-MYC-induzierten Genprodukte (MetAP/p67) unterdrückt, bereits in der klinischen Erprobung als Krebstherapeutikum. Durch ihre Veröffentlichung der 476 durch c-MYC regulierten Gene haben die beiden Wissenschaftler viele Möglichkeiten für die Erforschung von Krebstherapeutika für die Wissenschaft zugänglich gemacht. Einige der Gene könnten in Zukunft als Wirkstoffziele für die Behandlung von Erkrankungen wie Tumore oder für die Unterdrückung der Neubildung von Blutgefäßen zur Versorgung der Krebszellen dienen.


Literaturhinweis:
Characterization of the c-MYC-regulated transciptome by SAGE: Identification and analysis of c-MYC target genes (2002). PNAS 99 (9): 6274-6279.

Kontakt:
Dr. Heiko Hermeking
Molekulare Onkologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18a
82152 Martinsried
herme@biochem.mpg.de
www.biochem.mpg.de/hermeking


Eva-Maria Diehl | idw
Weitere Informationen:
http://www.biochem.mpg.de/hermeking

Weitere Berichte zu: Gen Protein Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise