Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Eizellen zu viele Chromosomen haben

09.11.2007
Viele Erkrankungen und Fehlentwicklungen des Menschen haben ihre Wurzeln in dessen evolutionärer Geschichte. Die meisten Tiere und Pflanzen setzen bei der Fortpflanzung auf eine bewährte Strategie: Sie kombinieren ihr Erbgut neu und halten dabei dessen Gesamtmenge konstant.

Dieses Ziel lässt sich auf verschiedenen Wegen erreichen. Einer davon (Automixis) war bislang nur bei Insekten bekannt, doch Wissenschaftler vom Biozentrum der Uni Würzburg haben ihn jetzt erstmals auch bei Wirbeltieren nachgewiesen. Damit können sie unter anderem eine häufige Ursache für Defekte bei menschlichen Embryonen erklären, wie sie in der Zeitschrift Current Biology berichten.

Das Erbgut eines Menschen ist auf 46 Chromosomen verteilt. 23 davon stammen von seiner Mutter, 23 vom Vater. Wenn sich bei Frauen die Eizellen bilden und beim Mann die Spermien, dann tauschen die Chromosomen zuerst untereinander Material aus. Danach verteilen sie sich so, dass am Ende jede Eizelle und jedes Spermium genau 23 Chromosomen enthält. Vereinigen sich Ei und Spermium bei der Befruchtung miteinander, ergibt sich wiederum die doppelte und damit komplette genetische Ausstattung.

Passieren aber bei der Reifung der Ei- oder Spermienzellen Fehler, kann es zu Abweichungen von diesen Zahlen kommen. "Beim Menschen haben etwa zwei Prozent aller befruchteten Eizellen nicht den doppelten Chromosomensatz, sondern einen dreifachen, also insgesamt 69 Chromosomen", sagt Professor Manfred Schartl vom Biozentrum. Solche Embryonen sind nicht lebensfähig und sterben im ersten Drittel der Schwangerschaft ab.

Was für Menschen problematisch ist, stecken andere Lebewesen locker weg. Frösche, Lurche und Fische etwa können mit abweichenden Chromosomenzahlen gut leben. Das trifft auch auf den Amazonenkärpfling zu, einen Süßwasserbewohner aus Mexiko: Von ihm gibt es in der Natur Exemplare mit doppeltem, aber auch mit dreifachem Chromosomensatz. Wie es bei dem Fisch zu dieser Unregelmäßigkeit kommt, wollten Schartl und sein Team aus der Physiologischen Chemie gemeinsam mit Kollegen der Humangenetik herausfinden.

Bei den Amazonenkärpflingen gibt es nur Weibchen. Ihre Eizellen können sich direkt zu einem Fisch entwickeln, ganz ohne zusätzliches Erbmaterial aus einem Spermium. Denn bei dem mexikanischen Fisch ist die Jungfernzeugung die Regel. Davon sprechen Biologen, wenn ein Weibchen auch ohne Befruchtung Junge bekommen kann. Damit sich aus den Eizellen Embryonen entwickeln können, müssen zwar noch Spermien ins Spiel kommen. Diese "stehlen" die Amazonenkärpflinge von Männchen einer nahe verwandten Art, indem sie diese zur Kopulation verführen. Die Spermien aber geben dem Ei nur einen rein mechanischen Anstoß zur Weiterentwicklung; das männliche Erbgut findet keinen Eingang in den Embryo. Die dabei entstehenden Töchter haben all ihre Chromosomen von der Mutter, mit der sie folglich genetisch identisch sind.

Der Amazonenkärpfling ist im Verlauf der Evolution entstanden, als sich zwei andere Kärpflingsarten kreuzten. Dieses Ereignis spielten die Würzburger im Labor nach. Die Kreuzung ergab Fische mit doppeltem Chromosomenbestand. Unter deren Nachkommen wiederum fanden sich aber auch Tiere mit dreifachem Chromosomensatz. Wie es dazu kommen konnte, verfolgten die Forscher nun mit molekulargenetischen Methoden zurück.

Wie sie in Current Biology schreiben, tritt bei den untersuchten Fischen die so genannte Automixis auf, die bislang nur von Insekten bekannt war. Dabei wird die Zahl der Chromosomen nicht in allen entstehenden Eizellen halbiert. Es gibt darum sowohl Eizellen mit einfachem als auch mit doppeltem Chromosomensatz, die dann untereinander wieder verschmelzen. So stehen am Ende des Prozesses auch Eizellen mit dreifachem Chromosomensatz.

Weil die Automixis nun erstmals auch bei Wirbeltieren nachgewiesen wurde, ziehen die Würzburger Wissenschaftler zwei Schlussfolgerungen. Zum Einen vermuten sie, dass dieser Mechanismus auch bei höheren Tieren einschließlich des Menschen dafür sorgt, dass Embryonen mit dreifachem Chromosomensatz entstehen können. Zum Anderen erklärt sich damit auch das spontane Auftreten von Jungfernzeugungen bei manchen Wirbeltieren. Solche Fortpflanzungen ohne Beteiligung von Männchen sind zum Beispiel von Hammerhaien und Waranen bekannt, die lange Zeit isoliert in Zoos gehalten wurden. "Durch Automixis können auch bei Wirbeltieren Eizellen mit doppeltem Chromosomensatz entstehen, die sich dann von alleine zu Embryonen weiterentwickeln", so Schartl.

Diese Ergebnisse erarbeitete der Professor mit seinen Kolleginnen Kathrin P. Lampert, die inzwischen an der Uni Bochum tätig ist, Dunja K. Lamatsch, die zurzeit an der Universität in Sheffield forscht, und Petra Fischer sowie mit den Würzburger Humangenetikern Professor Michael Schmid und Indrajit Nanda. Außerdem war der Bochumer Humangenetiker Jörg T. Epplen beteiligt.

"Automictic Reproduction in Interspecific Hybrids of Poeciliid Fish", Kathrin P. Lampert, Dunja K. Lamatsch, Petra Fischer, Jörg T. Epplen, Indrajit Nanda, Michael Schmid und Manfred Schartl, Current Biology, online veröffentlicht am 1. November 2007, DOI: 10.1016/j.cub.2007.09.064

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie