Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien verraten Auslöser für Immunreaktion: Schneller und direkter Nachweis für Antigene

14.09.2007
So gut wie jeder Erwachsene jenseits der 40 trägt das Epstein-Barr Virus (EBV) im Körper, denn EBV gehört mit einer Durchseuchungsrate von über 90 Prozent zu den erfolgreichsten Viren.

Wie alle Herpesviren bleibt EBV nach einer Infektion lebenslang latent im Körper. Bei gesunden Menschen ist dies kein Problem, denn normalerweise hält unser Immunsystem das Virus gut in Schach. Wird das Immunsystem aber z.B. durch eine AIDS-Erkrankung oder nach einer Transplantation unterdrückt, kann EBV wieder aktiv werden und die Entstehung bösartiger Tumoren auslösen.

Eine Immuntherapie mit Hilfe von Abwehrzellen des Immunsystems (T-Zellen) kann hier helfen. Die T-Zellen müssen aber gezielt auf diejenigen Bestandteile des Virus abgerichtet werden, die die Immunreaktion auslösen (Antigene). Bei der Identifizierung solcher Angriffspunkte hilft eine elegante und schnelle Methode, die von einer Klinischen Kooperationsgruppe des GSF - Forschungszentrums für Umwelt und Gesundheit und der Kinderklinik der Technischen Universität München (TUM) entwickelt wurde. Der Trick: Bakterien werden zunächst genetisch so modifiziert, dass sie alle EBV-spezifischen Proteine produzieren. Mit Hilfe bekanntermaßen EBV-spezifischer T-Zellen kann dann getestet werden, ob diese Proteine als Antigene wirken.

EBV-spezifische, zytotoxische und Helfer-T-Zellen wurden bereits erfolgreich zur Behandlung EBV-assoziierter Tumoren eingesetzt, aber gegen welche Antigene genau die T-Zellen vorgehen, blieb unbekannt. Deshalb mussten geeignete T-Zellen umständlich und über Umwege herangezüchtet werden. "Bisher dauert die Generierung EBV-spezifischer T-Zellen zwei bis drei Monate, was für viele immunsupprimierte Patienten mit EBV-assoziierten Komplikationen zu langwierig ist. Darüber hinaus ist die Herstellung zu aufwändig, als das man das für jeden Patienten prophylaktisch machen könnte.", erklärt PD Dr. Uta Behrends, die Leiterin der Klinischen Kooperationsgruppe Pädiatrische Tumorimmunologie, "Wären die relevanten EBV-Antigene bekannt, könnte die Behandlung im Idealfall bereits innerhalb von wenigen Tagen verfügbar sein."

Um diesem Ziel näher zu kommen, entwickelten die Wissenschaftler ein Nachweisverfahren, mit dem Helfer-T-Zell-Antigene direkt identifiziert werden können: DANI (Direct antigen identification). Das Prinzip: In E. coli Bakterien werden Bruchstücke des gesamten EBV-Genoms eingeschleust, die dafür sorgen, dass in der Bakterienzelle alle viralen Proteine gebildet werden. Besonders gut funktioniert dies, wenn jeweils nur kleine DNA-Bruchstücke eingeschleust und somit jeweils nur kleine Teile der Proteine hergestellt werden.

Diese müssen zum Schutz vor Abbau an ein Trägerprotein gekoppelt werden. Als Trägerprotein dient die Chloramphenicol Acetyltransferase (CAT), welche gleich zwei Vorteile bietet: Erstens werden an CAT fusionierte Antigenbruchstücke sogar dann auf hohem Niveau gebildet, wenn sie von Proteinen stammen, die für Bakterien schädlich sind. Und zweitens kann durch Zugabe des Antibiotikums Chloramphenicol selektiert werden, welche Bakterien ein funktionelles Fusionsprotein bilden: Nur Bakterien, die CAT bilden, können Chloramphenicol inaktivieren und Kolonien bilden - da dies nur für etwa ein Zehntel der Bakterien zutrifft, wird der Screeningaufwand beträchtlich reduziert.

Die Chloramphenicol-resistenten Bakterien werden in Kultur genommen und an Antigen-präsentierende Zellen "verfüttert". Diese bauen die Bakterien inklusive des Fusionsproteins ab und präsentieren die Spaltprodukte auf den HLA-Rezeptoren an der Zelloberfläche. Dann werden EBV spezifische T-Zellen zugegeben - erfolgt daraufhin eine Immunreaktion, sind die Spaltprodukte als Antigene enttarnt. Mit dieser Methode identifizierte die Arbeitsgruppe z.B. die EBV-spezifischen Antigene BALF4 und BNRF1 als Zielstrukturen von T-Helferzellen. Beide Proteine werden im lytischen Vermehrungszyklus des Virus gebildet, wenn EBV sich in der Zelle mit Hilfe der Zellressourcen vervielfacht, die Wirtszelle schließlich platzt und die neugebildeten Viren freigesetzt werden.

Bisher wurde DANI vor allem bei Fragestellungen in Bezug auf EBV eingesetzt. Analog zu viralen Antigenen können mit DANI zukünftig aber auch Tumor-, Transplantations- oder Autoantigene identifiziert werden, die von T-Helferzellen erkannt werden. Die Identifizierung von Tumor- und bestimmten Transplantationsantigenen kann zur Entwicklung von Immuntherapien für Krebspatienten beitragen. "Mit T-Zellen gegen Transplantationsantigene, die ausschließlich auf Blutzellen vorkommen, könnte man z.B. auf gut verträgliche Art und Weise Leukämierückfällen nach einer Knochenmarktransplantation vorbeugen", hofft Behrends, deren Arbeitsgruppe an GSF und TUM sich in Zukunft auch der Suche nach Tumor- und Transplantationsantigenen mit DANI widmen wird.

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de/neu/Aktuelles/Presse/2007/immunreaktion.php

Weitere Berichte zu: Antigene Bakterium DANI EBV Immunreaktion Protein T-Zellen Virus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie