Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Nervenzellen kommunizieren

06.09.2007
Das menschliche Gehirn leitet elektrische Ströme ähnlich wie ein Glas Salzwasser

Die elektrischen Feldpotenziale, die Gehirnströme widerspiegeln, werden nicht durch die elektrische Leitfähigkeit des Gehirns beeinträchtigt. Wie Forscher vom Max-Planck-Institut für biologische Kybernetik in Tübingen herausgefunden haben, leitet das Gehirn elektrische Ströme ähnlich wie Salzwasser. Dies impliziert, dass zum Beispiel die Signale eines Elektro-Enzephalogramms (EEG) die Eigenschaften der Nervenzellen oder Neuronen-Populationen korrekt wiedergeben und nicht durch passive elektrische Eigenschaften der Hirnsubstanz verfälscht werden (Neuron 6. September 2007).


Der spezifische Widerstand der grauen Substanz ist frequenzunabhängig. Bild: Max-Planck-Institut für biologische Kybernetik, Tübingen

Die Grundlage der Sinnesverarbeitung im Gehirn bilden elektrische Impulse, mit denen die einzelnen Nervenzellen miteinander kommunizieren. Diese Signale laufen entlang der Nervenfortsätze und erlauben es dem Gehirn, Information gezielt von einem Areal oder Neuron zu einem anderen zu senden. Um nun das Gehirn zu verstehen, messen Wissenschaftler genau diese Hirnströme. Dies allerdings oft mit sehr ungenauen und großflächigen Methoden, wie zum Beispiel den Elektroden des Elektro-Enzephalogramms (EEG), die direkt auf dem Kopf platziert werden.

Um von den gemessenen Hirnströmen auf die Aktivität der Neurone schließen zu können, ist ein Verständnis der elektrischen Eigenschaften des Gehirns unerlässlich. Obwohl die Kommunikation der Neurone entlang der Nervenbahnen erfolgt, breiten sich die dabei entstehenden elektrischen Felder und Ströme in alle Richtungen aus. Diese diffuse Ausbreitung ergibt sich aus der Tatsache, dass das Gehirn ein mit Zellmembranen und Nervenfasern durchzogener Elektrolyt ist, das heißt zum größten Teil aus elektrisch leitfähigen Substanzen besteht, ähnlich wie Salzwasser. Nur aufgrund dieser diffusen Ausbreitung der elektrischen Nervenimpulse können Wissenschaftler die neuronale Aktivität außerhalb der Zellmembran und des Schädels überhaupt messen.

Bislang waren die elektrische Leitfähigkeit und ihr Einfluss auf die gemessenen Hirnströme leider nur unzulänglich bekannt. So wurde oft das Argument vorgebracht, dass die Hirnrinde wie ein kapazitiver Filter wirkt. Das würde bedeuten, dass die diffuse Ausbreitung elektrischer Signale von Ihrer Schwingungsfrequenz abhängt. Auch wenn diese Idee auf den ersten Blick seltsam anmutet, so lassen sich doch einige Beobachtungen damit erklären. Zum Beispiel die Tatsache, dass Signale tiefer Frequenz im EEG eher unspezifisch sind und über große räumliche Abstände mit einander korrelieren, während Signale hoher Frequenz selektiv und räumlich sehr begrenzt zu sein scheinen.

Um diese Hypothese zu untersuchen, haben Forscher des Max-Planck-Instituts für biologische Kybernetik in Tübingen ein Messsystem entwickelt, dass es erlaubt den elektrischen Widerstand der Hirnsubstanz für Ströme verschiedener Frequenz zu messen. Dies ist äußerst anspruchsvoll, da die Wissenschaftler dazu erst den Einfluss der Messapparatur auf den gemessenen Widerstand ausschließen mussten. Durch eine Modifikation der Kelvin Methode - hierbei werden vier Elektroden verwendet, zwei zum Einspeisen einer elektrischen Schwingung und zwei zu deren Messung - ist dies nun zum ersten Mal gelungen.

EEG-Messungen werden nicht verfälscht

Die Messungen haben die Hypothese der Hirnrinde als frequenzabhängigen Filter eindeutig widerlegt. Sie beweisen im Gegensatz dazu, dass die Hirnsubstanz elektrische Ströme mit den gleichen Eigenschaften leitet wie ein klassischer Ohmscher Widerstand - das Gehirn verhält sich in dieser Hinsicht wie ein Glas salziges Wasser. Insbesondere konnten wir zeigen, dass der spezifische Widerstand der grauen Substanz frequenzunabhängig und in alle Richtungen gleich ist. In der weißen Substanz, die vor allem aus Nervenverbindungen besteht und selbst keine Neurone enthält, ist dies allerdings anders. Hier hängt die Leitfähigkeit von der Messrichtung ab und ist in paralleler Richtung zu den Nervenverbindungen deutlich höher, aber auch hier ist die Leitfähigkeit für alle Schwingungen gleich.

Diese Erkenntnisse verbessern die Interpretierbarkeit von elektrophysiologischen Ableitungen enorm. Wie Wissenschaftler können jetzt mit Sicherheit sagen, dass die Eigenschaften der gemessenen Signale vor allem die Eigenschaften der Nervenzellen oder Neuronen-Populationen widerspiegeln, die diese Signal generieren, und nicht durch passive elektrische Eigenschaften der Hirnsubstanz verfälscht werden.

Originalveröffentlichung:

Nikos Logothetis, Christoph Kayser, Axel Oeltermann
In vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation

Neuron 55 (2007)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: EEG Frequenz Hirnsubstanz Leitfähigkeit Nervenzelle Neuron

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie