Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Nervenzellen kommunizieren

06.09.2007
Das menschliche Gehirn leitet elektrische Ströme ähnlich wie ein Glas Salzwasser

Die elektrischen Feldpotenziale, die Gehirnströme widerspiegeln, werden nicht durch die elektrische Leitfähigkeit des Gehirns beeinträchtigt. Wie Forscher vom Max-Planck-Institut für biologische Kybernetik in Tübingen herausgefunden haben, leitet das Gehirn elektrische Ströme ähnlich wie Salzwasser. Dies impliziert, dass zum Beispiel die Signale eines Elektro-Enzephalogramms (EEG) die Eigenschaften der Nervenzellen oder Neuronen-Populationen korrekt wiedergeben und nicht durch passive elektrische Eigenschaften der Hirnsubstanz verfälscht werden (Neuron 6. September 2007).


Der spezifische Widerstand der grauen Substanz ist frequenzunabhängig. Bild: Max-Planck-Institut für biologische Kybernetik, Tübingen

Die Grundlage der Sinnesverarbeitung im Gehirn bilden elektrische Impulse, mit denen die einzelnen Nervenzellen miteinander kommunizieren. Diese Signale laufen entlang der Nervenfortsätze und erlauben es dem Gehirn, Information gezielt von einem Areal oder Neuron zu einem anderen zu senden. Um nun das Gehirn zu verstehen, messen Wissenschaftler genau diese Hirnströme. Dies allerdings oft mit sehr ungenauen und großflächigen Methoden, wie zum Beispiel den Elektroden des Elektro-Enzephalogramms (EEG), die direkt auf dem Kopf platziert werden.

Um von den gemessenen Hirnströmen auf die Aktivität der Neurone schließen zu können, ist ein Verständnis der elektrischen Eigenschaften des Gehirns unerlässlich. Obwohl die Kommunikation der Neurone entlang der Nervenbahnen erfolgt, breiten sich die dabei entstehenden elektrischen Felder und Ströme in alle Richtungen aus. Diese diffuse Ausbreitung ergibt sich aus der Tatsache, dass das Gehirn ein mit Zellmembranen und Nervenfasern durchzogener Elektrolyt ist, das heißt zum größten Teil aus elektrisch leitfähigen Substanzen besteht, ähnlich wie Salzwasser. Nur aufgrund dieser diffusen Ausbreitung der elektrischen Nervenimpulse können Wissenschaftler die neuronale Aktivität außerhalb der Zellmembran und des Schädels überhaupt messen.

Bislang waren die elektrische Leitfähigkeit und ihr Einfluss auf die gemessenen Hirnströme leider nur unzulänglich bekannt. So wurde oft das Argument vorgebracht, dass die Hirnrinde wie ein kapazitiver Filter wirkt. Das würde bedeuten, dass die diffuse Ausbreitung elektrischer Signale von Ihrer Schwingungsfrequenz abhängt. Auch wenn diese Idee auf den ersten Blick seltsam anmutet, so lassen sich doch einige Beobachtungen damit erklären. Zum Beispiel die Tatsache, dass Signale tiefer Frequenz im EEG eher unspezifisch sind und über große räumliche Abstände mit einander korrelieren, während Signale hoher Frequenz selektiv und räumlich sehr begrenzt zu sein scheinen.

Um diese Hypothese zu untersuchen, haben Forscher des Max-Planck-Instituts für biologische Kybernetik in Tübingen ein Messsystem entwickelt, dass es erlaubt den elektrischen Widerstand der Hirnsubstanz für Ströme verschiedener Frequenz zu messen. Dies ist äußerst anspruchsvoll, da die Wissenschaftler dazu erst den Einfluss der Messapparatur auf den gemessenen Widerstand ausschließen mussten. Durch eine Modifikation der Kelvin Methode - hierbei werden vier Elektroden verwendet, zwei zum Einspeisen einer elektrischen Schwingung und zwei zu deren Messung - ist dies nun zum ersten Mal gelungen.

EEG-Messungen werden nicht verfälscht

Die Messungen haben die Hypothese der Hirnrinde als frequenzabhängigen Filter eindeutig widerlegt. Sie beweisen im Gegensatz dazu, dass die Hirnsubstanz elektrische Ströme mit den gleichen Eigenschaften leitet wie ein klassischer Ohmscher Widerstand - das Gehirn verhält sich in dieser Hinsicht wie ein Glas salziges Wasser. Insbesondere konnten wir zeigen, dass der spezifische Widerstand der grauen Substanz frequenzunabhängig und in alle Richtungen gleich ist. In der weißen Substanz, die vor allem aus Nervenverbindungen besteht und selbst keine Neurone enthält, ist dies allerdings anders. Hier hängt die Leitfähigkeit von der Messrichtung ab und ist in paralleler Richtung zu den Nervenverbindungen deutlich höher, aber auch hier ist die Leitfähigkeit für alle Schwingungen gleich.

Diese Erkenntnisse verbessern die Interpretierbarkeit von elektrophysiologischen Ableitungen enorm. Wie Wissenschaftler können jetzt mit Sicherheit sagen, dass die Eigenschaften der gemessenen Signale vor allem die Eigenschaften der Nervenzellen oder Neuronen-Populationen widerspiegeln, die diese Signal generieren, und nicht durch passive elektrische Eigenschaften der Hirnsubstanz verfälscht werden.

Originalveröffentlichung:

Nikos Logothetis, Christoph Kayser, Axel Oeltermann
In vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation

Neuron 55 (2007)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: EEG Frequenz Hirnsubstanz Leitfähigkeit Nervenzelle Neuron

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie