Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zur Erbgut-Verdoppelung: LMU-Forscher analysieren Helikasen-Struktur

12.06.2007
Ein Team um den Biochemiker Professor Karl-Peter Hopfner, Fakultät für Chemie und Pharmazie sowie Genzentrum der Ludwig-Maximilians-Universität (LMU) München, hat erstmals den strukturellen Aufbau der Helikase "Hel308" aus dem Archaebakterium Archaeoglobus fulgidus im Komplex mit einem kurzen Erbgutstrang aufgeklärt.

Ein ähnliches Protein kommt auch im menschlichen Organismus vor und erfüllt dort die gleichen Aufgaben wie in dem Bakterium. Es initiiert die Aufspaltung des Erbguts (DNA), damit diese anschließend verdoppelt oder repariert werden kann. Neben der Struktur von "Hel308" konnten die Wissenschaftler zudem beobachten, welche Mechanismen Helikasen während der ersten Schritte bei der Aufspaltung des Erbguts einer Zelle einsetzen und woher sie ihre Energie beziehen.

Bei der Vervielfältigung und Reparatur des Erbinformationsträgers (DNA) einer Zelle nehmen die Helikasen eine wichtige Rolle ein. Die Helikasen initiieren die Entwindung der Einzelstränge der Basenpaare, die in einer Doppelhelixstruktur vorliegen. An diese Entwindung schließt sich dann direkt die Verdopplung der Erbgutstränge an. Eingeteilt sind die Helikasen in mindestens drei Überordnungen, den so genannten Superfamilien (SF). Ihre Untersuchung führten die Münchner Biochemiker Karl-Peter Hopfner, Katharina Büttner und Sebastian Nehring an der Helikase "Hel308" des Archaebakteriums Archaeoglobus fulgidus durch. Für ihre Studie brachten die Forscher einen Komplex aus einem kurzen Erbgutstrang des Bakteriums mit insgesamt 15 Basenpaaren und der Helikase "Hel308" in einen kristallinen Zustand., Anschließend wurde der Komplex mit einer Röntgenstrukturanalyse durchleuchtet. Ebenso wurde die Helikase ohne den Erbgutstrang untersucht.

"Wir konnten direkt 'sehen', wie sich die Helikase ähnlich wie eine Raupe über die Basenpaare der DNA bewegt", erklärt Hopfner. Bei diesem Vorgang machten die Forscher eine überraschende Entdeckung: Die Helikase zog ihre Entwindungsenergie für die ersten Schritte der DNA-Teilung nicht aus dem Adenosintriphosphat (ATP), wie es bislang vermutet wurde. "Die Energie erhält die Helikase zunächst einmal aus der Bindungsenergie an das Erbgut der Zelle und anschließend, zur weiteren Bewegung, aus dem ATP", sagt Hopfner. Dabei sind die Distanzen, die "Hel308" bei der Erbgut-Entwindung zurücklegt, minimal. Sie erfolgen schrittweise von Basenpaar zu Basenpaar. "Rund 0,6 Nanometer ist so ein Schritt lang", erklärt Hopfner. Zudem konnten die Münchner Wissenschaftler erstmals eine bestimmte Haarnadelstruktur auf "Hel308" lokalisieren. Diese so genannte Beta-Haarnadelstruktur wirkt entscheidend mit bei der initialen Entwindung des Erbguts. Sie wirkt dabei wie ein Pflug, der durch die DNA fährt und die Basenpaare trennt.

Eine ähnliche Haarnadelstruktur gibt es auch auf einer Helikase, die bei dem Hepatitis-C Virus NS3 aktiv an der Aufspaltung des Erbguts beteiligt ist. Die Forscher vermuten, dass diese Struktur noch in zahlreichen weiteren Helikasen des Typs SF2 vorhanden sein könnte. Zudem wurden aber auch Unterschiede zu Helikasen des Typs SF1 deutlich. Während Helikasen des Typs SF2 eher wie ein Pflug arbeiten, schälen Helikasen des Typs SF1 einen Strang von dem anderen ab.

Wie die Helikasen vom Typ SF2 die Entwindung des Erbguts bewerkstelligen ist bis heute weit weniger gut erforscht als bei den Helikasen des Typs SF1. Mit ihren Ergebnissen konnten die Forscher nun erstmals die Unterschiede zwischen den Helikasen-Typen SF1 und SF2 verdeutlichen. Dazu haben die Münchner Biochemiker einen wichtigen Schritt zum besseren Verständnis der Mechanismen beigetragen, die bei den Helikasen vom Typ SF2 die Auftrennung des Erbguts einleiten.

Die neuen Erkenntnisse über die Mechanismen der Aufspaltung des Erbgutes durch "Hel308" könnten nun helfen, wirkungsvollere Medikamente, etwa gegen das Hepatitis C-Virus, zu entwickeln. Denn Helikasen, die - wie "Hel308" - meist den Superfamilien 2 und 3 angehören, sind wichtige Zielenzyme bei der Entwicklung von Inhibitoren, also Hemmstoffen gegen Krankheiten wie Hepatitis C.

Veröffentlichung:
"Structural basis for DNA duplex separation by a superfamily 2 helicase", Karl-Peter Hopfner, Katharina Büttner, Sebastian Nehring, Nature Structural & Molecular Biology.
Ansprechpartner:
Prof. Dr. Karl-Peter Hopfner
Fakultät für Chemie und Pharmazie
Genzentrum der LMU
Tel: 089 / 2180 76 953
Fax: 2180 76 999
E-Mail: hopfner@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Aufspaltung Basenpaar DNA Erbgut Hel308" Helikase Helikasen Hepatitis C SF1 SF2

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops