Neue Erkenntnisse zur Erbgut-Verdoppelung: LMU-Forscher analysieren Helikasen-Struktur

Ein ähnliches Protein kommt auch im menschlichen Organismus vor und erfüllt dort die gleichen Aufgaben wie in dem Bakterium. Es initiiert die Aufspaltung des Erbguts (DNA), damit diese anschließend verdoppelt oder repariert werden kann. Neben der Struktur von „Hel308“ konnten die Wissenschaftler zudem beobachten, welche Mechanismen Helikasen während der ersten Schritte bei der Aufspaltung des Erbguts einer Zelle einsetzen und woher sie ihre Energie beziehen.

Bei der Vervielfältigung und Reparatur des Erbinformationsträgers (DNA) einer Zelle nehmen die Helikasen eine wichtige Rolle ein. Die Helikasen initiieren die Entwindung der Einzelstränge der Basenpaare, die in einer Doppelhelixstruktur vorliegen. An diese Entwindung schließt sich dann direkt die Verdopplung der Erbgutstränge an. Eingeteilt sind die Helikasen in mindestens drei Überordnungen, den so genannten Superfamilien (SF). Ihre Untersuchung führten die Münchner Biochemiker Karl-Peter Hopfner, Katharina Büttner und Sebastian Nehring an der Helikase „Hel308“ des Archaebakteriums Archaeoglobus fulgidus durch. Für ihre Studie brachten die Forscher einen Komplex aus einem kurzen Erbgutstrang des Bakteriums mit insgesamt 15 Basenpaaren und der Helikase „Hel308“ in einen kristallinen Zustand., Anschließend wurde der Komplex mit einer Röntgenstrukturanalyse durchleuchtet. Ebenso wurde die Helikase ohne den Erbgutstrang untersucht.

„Wir konnten direkt 'sehen', wie sich die Helikase ähnlich wie eine Raupe über die Basenpaare der DNA bewegt“, erklärt Hopfner. Bei diesem Vorgang machten die Forscher eine überraschende Entdeckung: Die Helikase zog ihre Entwindungsenergie für die ersten Schritte der DNA-Teilung nicht aus dem Adenosintriphosphat (ATP), wie es bislang vermutet wurde. „Die Energie erhält die Helikase zunächst einmal aus der Bindungsenergie an das Erbgut der Zelle und anschließend, zur weiteren Bewegung, aus dem ATP“, sagt Hopfner. Dabei sind die Distanzen, die „Hel308“ bei der Erbgut-Entwindung zurücklegt, minimal. Sie erfolgen schrittweise von Basenpaar zu Basenpaar. „Rund 0,6 Nanometer ist so ein Schritt lang“, erklärt Hopfner. Zudem konnten die Münchner Wissenschaftler erstmals eine bestimmte Haarnadelstruktur auf „Hel308“ lokalisieren. Diese so genannte Beta-Haarnadelstruktur wirkt entscheidend mit bei der initialen Entwindung des Erbguts. Sie wirkt dabei wie ein Pflug, der durch die DNA fährt und die Basenpaare trennt.

Eine ähnliche Haarnadelstruktur gibt es auch auf einer Helikase, die bei dem Hepatitis-C Virus NS3 aktiv an der Aufspaltung des Erbguts beteiligt ist. Die Forscher vermuten, dass diese Struktur noch in zahlreichen weiteren Helikasen des Typs SF2 vorhanden sein könnte. Zudem wurden aber auch Unterschiede zu Helikasen des Typs SF1 deutlich. Während Helikasen des Typs SF2 eher wie ein Pflug arbeiten, schälen Helikasen des Typs SF1 einen Strang von dem anderen ab.

Wie die Helikasen vom Typ SF2 die Entwindung des Erbguts bewerkstelligen ist bis heute weit weniger gut erforscht als bei den Helikasen des Typs SF1. Mit ihren Ergebnissen konnten die Forscher nun erstmals die Unterschiede zwischen den Helikasen-Typen SF1 und SF2 verdeutlichen. Dazu haben die Münchner Biochemiker einen wichtigen Schritt zum besseren Verständnis der Mechanismen beigetragen, die bei den Helikasen vom Typ SF2 die Auftrennung des Erbguts einleiten.

Die neuen Erkenntnisse über die Mechanismen der Aufspaltung des Erbgutes durch „Hel308“ könnten nun helfen, wirkungsvollere Medikamente, etwa gegen das Hepatitis C-Virus, zu entwickeln. Denn Helikasen, die – wie „Hel308“ – meist den Superfamilien 2 und 3 angehören, sind wichtige Zielenzyme bei der Entwicklung von Inhibitoren, also Hemmstoffen gegen Krankheiten wie Hepatitis C.

Veröffentlichung:
„Structural basis for DNA duplex separation by a superfamily 2 helicase“, Karl-Peter Hopfner, Katharina Büttner, Sebastian Nehring, Nature Structural & Molecular Biology.
Ansprechpartner:
Prof. Dr. Karl-Peter Hopfner
Fakultät für Chemie und Pharmazie
Genzentrum der LMU
Tel: 089 / 2180 76 953
Fax: 2180 76 999
E-Mail: hopfner@lmb.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer