Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo die Produktion der Protein-Fabriken beginnt

01.06.2007
Der Mensch und alle anderen Lebewesen auf der Erde sind aus Zellen aufgebaut. Je tiefer die Wissenschaft in deren Mikrokosmos eintaucht, desto komplexer erscheint er. In diesem Dickicht haben Forscher vom Biozentrum der Uni Würzburg den Ort ausfindig gemacht, an dem die Zelle mit dem Zusammenbau ihrer hauseigenen Protein-Fabriken beginnt. Ihre Ergebnisse haben sie jetzt im renommierten Journal of Cell Biology veröffentlicht.

Proteine sind für alle Lebewesen enorm wichtig. Sie dienen als Baustoffe, verdauen die Nahrung, schützen den Organismus vor Bakterien und tun noch Vieles mehr. Die für alle Lebensvorgänge unersetzlichen Protein-Fabriken in den Zellen heißen Ribosomen. Sie sehen aus wie winzig kleine Körner und bestehen aus RNA-Molekülen sowie aus etwa 80 verschiedenen Proteinen.


Ein kreisrunder Zellkern in zwei Aufnahmen: Die dreilappige Struktur in seiner Mitte ist das Kernkörperchen. In ihm werden die Protein-Fabriken der Zelle, die Ribosomen, zusammengebaut. Die Farben links entstehen durch fluoreszierende Proteine: Die roten Stellen markieren die Startpunkte der Ribosomen-Produktion, die grünen Bereiche zeigen an, dass die Ribosomen dort bereits fertig sind. Darum sind auch Bereiche außerhalb des Zellkerns grün gefärbt. Aufnahmen: Tim Krüger

Eine einzige Körperzelle des Menschen enthält rund zehn Millionen Ribosomen, welche die unterschiedlichsten Proteine synthetisieren. Hochbetrieb ist nach jeder Zellteilung angesagt: Die rasch wachsenden Tochterzellen müssen mit dem notwendigen Vorrat an Ribosomen versorgt werden. Dazu hat die Zelle pro Sekunde etwa 100 Ribosomen herzustellen. Die Produktion erfolgt im so genannten Kernkörperchen oder Nukleolus, einer bereits im Lichtmikroskop deutlich erkennbaren Struktur des Zellkerns.

Die Zellbiologen Tim Krüger und Ulrich Scheer vom Würzburger Lehrstuhl für Zell- und Entwicklungsbiologie haben herausgefunden, wo genau der Zusammenbau der Ribosomen innerhalb des Kernkörperchens beginnt. Damit sind sie ihrem Ziel, dessen funktionelle Architektur zu verstehen und mit den molekularen Abläufen der Ribosomen-Produktion in Verbindung zu setzen, einen entscheidenden Schritt nähergekommen. Den Forschern zufolge lässt sich die Herstellung der Ribosomen mit einer Fließbandproduktion vergleichen: Der Anfang des Fließbands liegt tief im Inneren, sein Ende am Rand des Kernkörperchens. Die fertigen Produkte werden dann schnell aus dem Zellkern hinausgeschleust, damit sie umgehend mit der Protein-Produktion beginnen können.

"An welcher Stelle des Fließbands der eigentliche Zusammenbau der Ribosomen aus RNA und Proteinen beginnt, war bislang umstritten", sagt Scheer. Die Würzburger Forscher haben jetzt gezeigt, dass dies in fest umrissenen Randbereichen des Kernkörperchens passiert, die durch eine körnige Struktur gekennzeichnet sind. Dazu koppelten sie verschiedene ribosomale Proteine mit fluoreszierenden Proteinen. Dann verfolgten sie die Verteilung und das dynamische Verhalten der mit Leuchtmarker gekennzeichneten Proteine in lebenden menschlichen Zellen mit Hilfe der hoch auflösenden konfokalen Laserscanning-Mikroskopie. Zudem untersuchten sie die räumliche Verteilung von ribosomalen Proteinen innerhalb des Nukleolus mit Hilfe der Immungold-Elektronenmikroskopie. Den hierfür nötigen Antikörper entwickelten sie in Kollaboration mit Wissenschaftlern vom Deutschen Krebsforschungszentrum in Heidelberg.

Weitere Informationen: Prof. Dr. Ulrich Scheer, T (0931) 888-4251, scheer@biozentrum.uni-wuerzburg.de

"Intranucleolar sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins", Tim Krüger, Hanswalter Zentgraf, Ulrich Scheer, Journal of Cell Biology 2007, 177 (4), Seiten 573-578.

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/

Weitere Berichte zu: Kernkörperchen Protein Protein-Fabriken Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten