Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Laser wird zum Nano-Skalpell: Neues Werkzeug ermöglicht Molekülchirurgie

10.05.2007
Gezielt können einzelne Bestandteile menschlicher DNA oder von Tumorzellen inaktiviert werden: Der Saarbrücker Mikrosensoriker und Laserphysiker Prof. Dr. Karsten König hat mit einem Forschungsteam aus Jena ein neues Werkzeug zur Molekülchirurgie entwickelt. Durch eine Kombination aus Laser-Licht und Nanopartikel werden erstmals Bohrungen und Schnitte 2000 mal feiner als die Breite eines Haares möglich. Mit einer Größe von 40 Nanometern, das sind 40 Millionstel Millimeter, ist Professor König und seinen Teamkollegen die weltweit kleinste optische Nano-Bohrung in ein einzelnes Chromosom gelungen.
Die Zeitschrift Nature Nanotechnology beschrieb die Entwicklung als "Forschungs-Highlight 2007" unter der Überschrift "Nanoparticles: Catch the Light".

Es ist nicht der Lichtstrahl selbst, der Löcher in Chromosomen brennt oder in einzelne Moleküle schneidet. Auf einen so winzigen Punkt lässt sich das Laserlicht nicht mehr fokussieren. Der Lasermedizin-Experte Professor Karsten König erreichte mit den ultrakurzen Laserpulsen seines Femtosekundenlasers einen Licht-Fokus von etwa einem Millionstel Meter - auch das war noch zu groß für die Nanochirurgie.

Mit einem Kunstgriff ist Professor König jetzt gemeinsam mit Kollegen der Firma JenLab GmbH und vom Jenaer Institut für Photonische Technologien der Durchbruch gelungen: Der Biophysiker nutzt die Wechselwirkung zwischen Nanopartikeln und Licht. Hierzu wird ein Nano-Metallkügelchen mit Hilfe molekularbiologischer Methoden an die Gensequenz gebunden, die ausgeschaltet werden soll; in den jetzt in NANOLETTERS (Czaki et al. NANOLETTERS 2(2007)247-253, www.nature.com/nnano/reshigh/2007) veröffentlichten Forschungsarbeiten war dies eine bestimmte Region des Chromosoms 1. Das Licht des Femtosekundenlasers - ultrakurze Laserpulse im nahen infraroten Spektralbereich - trifft ähnlich einem Scheinwerfer auf die Umgebung des Chromosoms. Der Nanopartikel fängt das Licht auf, erwärmt sich und brennt ein nur 40 Nanometer großes Loch exakt in diese Stelle - das entspricht einem Durchmesser von einem Zweitausendstel einer Haaresbreite. "Optical knock-out" nennen das die Wissenschaftler. Die umliegenden Teile des Chromosoms bleiben dabei unbeschadet.

Diese Kombinationstechnik aus Nanopartikel und ultrakurzen Laserpulsen schafft die Grundlage für eine Laser-Nanochirurgie. Erstmals werden eine hochpräzise optische DNA-Chirurgie und optische Nanomanipulation von Molekülen möglich. Dies eröffnet vollkommen neue therapeutische Möglichkeiten. So lassen sich zukünftig in der Gentherapie bestimmte genomische Bereiche der DNA, etwa solche, die einen genetischen Defekt verursachen, gezielt inaktivieren. Auch in der Tumor-, Neuro- oder Augenchirurgie sehen die Forscher Anwendungsfelder ihrer Methode. Das Team um Professor König am Lehrstuhl für Mikrosensorik der Universität des Saarlandes und am Fraunhofer-Institut für Biomedizinische Technik in St. Ingbert arbeitet derzeit daran, Proteine und einzelne Bestandteile von Tumorzellen optisch außer Gefecht zu setzen.

Die Firma JenLab GmbH, die Mitarbeiter auch an den Standorten St. Ingbert und Saarbrücken beschäftigt, hat die Basistechnologie zum weltweiten Patent angemeldet.

Die Forschungen wurden als Nanobiotechnologie-Projekt vom Bundesforschungsministerium gefördert.

Prof. Dr. Karsten König ist Professor für Mikrosensorik mit Aufbau- und Verbindungstechnik an der Saar-Universität und Abteilungsleiter für Mikrosystemtechnik/Lasermedizin am Fraunhofer-Institut für Biomedizinische Technik IBMT in St. Ingbert.

Für seine Forschungen unter anderem zur Nanochirurgie und zum Einsatz des Femtosekundenlasers in der Augenchirurgie und bei Hautkrebs wurde König mehrfach ausgezeichnet, so im Oktober 2005 mit dem Preis "Technik für den Menschen" der Fraunhofer-Gesellschaft und dem Pascal Rol Award der Society for Optical Engineering.

König hat ein Femtosekunden-Lasersystem so weiterentwickelt, dass es mit sehr hoher Pulsfolge im nahen infraroten Spektralbereich arbeitet und sein Lichtstrahl in bislang einzigartig präziser Weise fokussiert werden kann. Mit diesem Lasersystem hat er den Einstieg in die Nano-Laser-Medizin geschaffen, ein neuer Zweig der Medizin, der die einzelne Zelle und ihre Bestandteile in den Mittelpunkt von Diagnose und Therapie stellt. Mit reduzierter Leistung und Spezial-Optiken gewährt das System Einblicke in lebendes Gewebe mit bisher unbekannter Präzision - 1000 Mal genauer als Computertomographen.

Kontakt:
Prof. Dr. Karsten König
Tel. 06894 - 980-151
Fax 06894 - 980-152
E-Mail: karsten.koenig@ibmt.fraunhofer.de

Saar - Uni - Presseteam | idw
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen