Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Köpfe zählen oder Räume vermessen? - Bakterielle Kommunikationsstrategien unter der Lupe

27.03.2007
Auch Bakterien "reden" miteinander: Über Signalstoffe können sie ihre Nachbarn informieren, ob es sich lohnt, bestimmte Gene an- oder abzuschalten. Diese Kommunikation zwischen Bakterienzellen ist für das Überleben vieler Arten wesentlich. Aber was genau erfahren Bakterien durch die Signalstoffe?

Bisher gab es zwei Theorien hierzu: Entweder wird die Freisetzung von Signalstoffen als kooperative Strategie verstanden, mit der die Zelldichte bestimmt werden kann (Quorum Sensing) oder - alternativ - als nichtkooperative Strategie, bei der mit Hilfe des Signalstoffs lediglich festgestellt wird, wie groß der die Zelle umgebende Raum ist (Diffusion Sensing).

Wissenschaftler des GSF - Forschungszentrums für Umwelt und Gesundheit (Mitglied der Helmholtz-Gemeinschaft) konnten nun zeigen, dass beide Ansätze nur theoretische Extreme einer Gesamtstrategie sind, mit der Bakterien feststellen, ob sich in ihrer Umweltsituation der Energieaufwand lohnt, Stoffe wie z.B. Antibiotika oder Exoenzyme zu produzieren.

"Diese Gesamtstrategie - das sogenannte Efficiency Sensing - führt die bisherigen Theorien zusammen und lässt erstmals verstehen, wie und zu welchem Zweck bakterielle Kommunikation funktioniert", erklärt Dr. Burkhard Hense vom GSF-Institut für Biomathematik und Biometrie (IBB), der die verschiedenen Strategien mit Hilfe mathematischer Modelle analysierte.

... mehr zu:
»Bakterium »Signalstoffe »Zelldichte

Entdeckt wurde die mikrobielle Kommunikation in durchmischten flüssigen Laborkulturen, z.B. des Leuchtbakteriums Vibrio fischeri, dessen Biolumineszenz erst ab einer bestimmten Zelldichte auftritt. Daher wurde die Freisetzung von Signalmolekülen zunächst als Strategie verstanden, die Zelldichte zu bestimmen (Quorum Sensing). Allerdings stellt Quorum Sensing mit seinem kooperativen Ansatz aus evolutionärer Sicht keine stabile Überlebensstrategie dar, weil auch "Schmarotzer" von den freigesetzten Substanzen profitieren können, ohne die Kosten für ihre Produktion tragen zu müssen. Etwas simpler ist der Ansatz des Diffusion Sensing: Hier wird davon ausgegangen, dass das Bakterium mit Hilfe der Signalstoffe misst, ob der umgebende Raum klein genug ist, um eine für den gewünschten Effekt notwendige Wirkstoffkonzentration zu erreichen - andere Bakterien müssen im Gegensatz zum Quorum Sensing nicht unbedingt beteiligt sein.

In einer komplexen und heterogenen Umgebung wie dem Wurzelraum von Pflanzen haben allerdings beide Kommunikationsstrategien ihre Schwächen: Die Wurzeloberfläche stellt eine hoch komplexe Matrix dar, in der Feststoffe, Gele, Flüssigkeiten und Gase kleinräumig wechseln und wo zudem zahlreiche andere Organismen dazwischen reden.

In Kooperation mit Professor Dr. Anton Hartmann und Dr. Michael Rothballer von der GSF-Abteilung Mikroben-Pflanzen-Interaktionen (AMP) untersuchte Hense im Rahmen des interdisziplinären Querschnittsthemas "Molekulare Interaktionen in der Rhizosphäre" deshalb besonders diesen Lebensraum. Mit Hilfe mathematischer Modelle konnte er zeigen, dass die räumliche Verteilung der Bakterien in der Rhizosphäre die Kommunikaton oft stärker beeinflusst als die Zelldichte oder die Größe der Umgebung. Deshalb entwickelten die Wissenschaftler eine Synthese beider Modelle, das Efficiency Sensing: Die Mikroben nehmen immer eine Mischung aus Zelldichte, Zellverteilung und Diffusionslimitierung durch räumliche Bedingungen wahr, weil sich diese Punkte gar nicht exakt voneinander trennen lassen - welcher Aspekt vorherrscht, kommt auf die Umstände an.

Auch das Problem der "Schmarotzer" wird umgangen, wenn die räumliche Verteilung der Zellen berücksichtigt wird: Auf Wurzeloberflächen oder in Biofilmen bilden verwandte Organismen häufig klonale Mikrokolonien. Da in diesem Fall alle Verwandten in nächster Nähe sitzen, kommen sie auch am ehesten in den Genuss der Signalstoffe und der durch die Signalstoffe ausgelösten Reaktionen - Fremde bleiben weitgehend ausgeschlossen. Solche Aggregationen nahe verwandter Zellen ermöglichen somit eine evolutionär stabile Kooperation und bieten einen effektiven Schutz gegen Störungen von außen.

"Efficiency Sensing wurde zwar aus Beobachtungen und Modellierungen der Bedingungen der Rhizosphäre entwickelt, ist aber auf andere bakterielle Lebensräume übertragbar", betont Hense. Manipulationen des bakteriellen Signalsystems stellen daher in verschiedenen Bereichen des Lebens einen viel versprechenden Ansatz dar, z.B. in der Landwirtschaft (Unterstützung von pflanzenwachstumsfördernden Bakterien, Hemmung von Schadorganismen) oder der Medizin (Bekämpfung von Pathogenen). Ein besseres Verständnis der ökologischen Funktionsweise des Signalsystems unter natürlichen Bedingungen, wie es Efficiency Sensing erlaubt, ist Voraussetzung dafür.

Quelle: "Opinion: Does efficiency sensing unify diffusion and quorum sensing?" Burkhard A. Hense, Christina Kuttler, Johannes Müller, Michael Rothballer, Anton Hartmann and Jan-Ulrich Kreft; Nature Reviews Microbiology 5, 230-239 (March 2007) | doi:10.1038/nrmicro1600

Kontakt zur GSF- Pressestelle:
GSF - Forschungszentrum für Umwelt und Gesundheit
Kommunikation
Tel: 089 3187-2460
Fax 089 3187-3324
E-Mail: oea@gsf.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de/neu/Aktuelles/Presse/2007/bakterielle-kommunikation.php

Weitere Berichte zu: Bakterium Signalstoffe Zelldichte

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics