Wege aus der Energiekrise: Pflanzen mit mehr Biomasse

In Kreuzungen zwischen verschiedenen Arabidopsis thaliana Linien treten Unterschiede bezüglich Biomasseproduktion auf: Die Kreuzungsnachkommen (oben) sind größer und schwerer als die Eltern (unten). C24 und Col-0 sind die Eltern, aus denen durch Kreuzung die untersuchten rekombinanten Inzuchtlinien (RIL) erzeugt wurden. Bild: MPI für molekulare Pflanzenphysiologie

Steigende Kohlendioxidkonzentrationen der Atmosphäre und die Abnahme fossiler Brennstoffvorräte wie Erdöl, Erdgas oder Kohle zwingen dazu, andere Möglichkeiten der Energiegewinnung zu erschließen. Neben den regenerativen Energien, wie Windkraft, Erdwärme oder Sonnenenergie, bieten sich Pflanzen zur Energiegewinnung an, da sie in der Lage sind das Sonnenlicht zur Bildung energiereicher organischer Stoffe zu nutzen unter vorübergehender Festlegung von Kohlendioxid. Für die Züchtung solcher „Energiepflanzen“ wäre es von entscheidender Bedeutung, bereits frühzeitig ihr Ertragspotenzial zu erkennen – so z.B. bei Bäumen. Im Zuge von Untersuchungen zur Regulation von Wachstumsprozessen konnten Wissenschaftler des Max-Planck-Instituts für molekulare Pflanzenphysiologie und der Universität Potsdam bei der Ackerschmalwand (Arabidopsis thaliana) eine Reihe von Inhaltsstoffen identifizieren, die in einem engen Zusammenhang zum Biomasseertrag der Pflanzen standen. Die Ergebnisse der vorliegenden Arbeit weisen darauf hin, dass die Analyse von Inhaltsstoffmustern zu Ertragsvorhersagen genutzt werden könnte (PNAS, 5. März 2007).

Pflanzen sind in der Lage mit Hilfe des Sonnenlichts im Zuge der Fotosynthese alle organischen Stoffe aufzubauen, die sie für ihre Entwicklung und ihr Wachstum benötigen. Die Zunahme an Biomasse hängt somit vom Fotosynthese- bzw. dem Stoffaufbauvermögen der Pflanze ab. Welche Stoffe, in welcher Menge gebildet werden, ist verknüpft mit Umweltfaktoren, wie Lichtmenge, Wasser- und Nährstoffangebot, aber auch mit Schädlingsbefall. Die Pflanze muss die vorhandenen Ressourcen für die Bildung von Biomasse, Reservestoffen zur Überbrückung von Mangelperioden oder Stoffen zur Schädlingsabwehr optimal nutzen. Dies setzt eine ziemlich straffe Regulation und Steuerung des Stoffaufbaus voraus.

Es stellt sich die Frage, wie und wodurch die Pflanze das Wachstum steuert. Wissenschaftler vom Max-Planck-Institut für molekulare Pflanzenphysiologie und der Universität Potsdam wollten darauf eine Antwort finden. Dazu nutzen sie eine große Zahl genetisch gut charakterisierter Linien des Modellpflanzensystems der Ackerschmalwand (Arabidopsis thaliana), die sich durch große Unterschiede im Wachstum auszeichneten, so dass der Zusammenhang zwischen Wachstum und Inhaltsstoffzusammensetzung gut untersucht werden konnte.

Bekannt war bereits, dass die in Pflanzen gebildeten Inhaltsstoffe, wie z.B. Zucker, als Signale für Wachstumsänderungen wirken können. Deshalb lag es nahe zu vermuten, dass es einen Zusammenhang zwischen der Art und Menge von Inhaltsstoffen und dem Wachstum von Pflanzen gibt. Die Forscher ernteten die oberirdischen Pflanzenteile und trennten die Proben mittels Gaschromatographie nach ihren Bestandteilen auf. Daran anschließend wurde über eine Massenspektrometrie Art und Menge der Einzelbestandteile bestimmt, wie z.B. verschiedene Zucker, Säuren und Eiweißbestandteile.

Für die weiteren Auswertungen wurden diejenigen Inhaltsstoffe betrachtet, die in 85 Prozent der Proben analysiert werden konnten. Diese Inhaltsstoffzusammensetzung wurde in Beziehung zum Biomasseertrag der jeweiligen Pflanzen gesetzt. „Es zeigte sich, dass zwischen der Inhaltsstoffzusammensetzung und der Biomasse eine enge Beziehung besteht, die es ermöglicht, den Biomasseertrag vorauszusagen“, erklärt Rhonda Meyer.

Sollte sich auch in anderen Pflanzenbeständen ein Zusammenhang zwischen der Inhaltsstoffzusammensetzung junger Pflanzen und ihrem späteren Biomasseertrag zeigen, so hätte man mit diesem Analyseverfahren, dem sogenannten Metabolitenprofiling, eine hochwirksame Methode gefunden, um bereits im frühen Stadium der Pflanzenentwicklung Voraussagen über die Biomasseproduktion einer Pflanze zu treffen.: „Eine solche Möglichkeit würde die Züchtung von Energiepflanzen, also Pflanzen, die zur Produktion von Biomasse genutzt werden, revolutionieren,“ konstatiert die Wissenschaftlerin.

Originalveröffentlichung:

Rhonda C. Meyer, Matthias Steinfath, Jan Lisec, Martina Becher, Hanna Witucka-Wall, Ottó Törjék, Oliver Fiehn, Änne Eckhardt, Lothar Willmitzer, Joachim Selbig, Thomas Altmann

The metabolic signature related to high plant growth rate in Arabidospsis thaliana, PNAS, 5. März 2007

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer