Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Wassermoleküle können chemische Reaktionen in der Gasphase beeinflussen

26.01.2007
Wissenschaftler aus Göttingen und Purdue klären Mechanismus dieses katalytischen Effekts auf

Ein einzelnes Wassermolekül kann bereits eine chemische Elementarreaktion in der Gasphase beeinflussen und beschleunigen. Das haben Wissenschaftler aus Göttingen zusammen mit Forschern aus den USA herausgefunden. Sie konnten dabei gleichzeitig den Mechanismus dieses katalytischen Effekts aufklären. Die Ergebnisse dieser Untersuchungen sind von Bedeutung für ein besseres Verständnis der Chemie der Erdatmosphäre. Die zweijährigen Forschungsarbeiten unter der Leitung von Prof. Dr. Bernd Abel wurden am Institut für Physikalische Chemie der Georg-August-Universität durchgeführt. Kooperationspartner waren der Göttinger Chemiker Prof. Dr. Jürgen Troe sowie Experten der US-amerikanischen Purdue Universität in West Lafayette/Indiana. Das Wissenschaftsmagazin "Science" berichtet darüber in seiner Ausgabe vom 26. Januar 2007.

"Wasser und Wassermoleküle haben auf viele chemische und biologische Systeme eine besondere Wirkung und sind für viele ungewöhnliche Phänomene in der Natur verantwortlich. In der Vergangenheit haben Wissenschaftler lebhaft darüber spekuliert, ob die Anlagerung oder die Gegenwart von Wassermolekülen chemische Reaktionen, etwa in der Gasphase, beeinflussen oder gar beschleunigen kann", erläutert Prof. Abel. Die Forscher aus Göttingen und Purdue konnten nun belegen, dass dies der Fall ist für bestimmte Reaktionen, an denen zum Beispiel das OH-Radikal beteiligt ist. Bei diesem so genannten Hydroxylradikal handelt es sich um eine der wichtigsten chemischen Verbindungen für den Abbau von Spurenstoffen in der Atmosphäre.

Die Wissenschaftler haben unter anderem die Reaktion zwischem einem OH-Radikal und einem polaren Molekül aus der Gruppe der Aldehyde untersucht. Hier zeigte sich, dass der Reaktionsprozess allein durch die Anlagerung eines Wassermoleküls an einen der Reaktanden (Aldehyd) beschleunigt wird. Dabei kommt es zur Ausbildung von spezifischen, gerichteten Wasserstoffbrücken zwischen den Teilchen, wobei das Wassermolekül chemisch nicht verändert, verbraucht oder gespalten wird. Es fungiert als "Reaktionsbeschleuniger", in dem es mit Hilfe der Wasserstoffbrücken die Barriere absenkt, die im Normalfall die chemische Reaktion begrenzt. Damit tatsächlich ein katalytischer Effekt eintritt, muss das Wassermolekül an einer ganz bestimmten Stelle des Reaktanden positioniert sein. Reaktionsprozesse dieser Art laufen vielfach in der Atmosphäre der Erde ab.

... mehr zu:
»Gasphase »Wassermolekül

Die Göttinger Spezialisten haben diese chemischen Reaktionen bei Temperaturen von bis zu -250 Grad Celsius in einer speziell dafür konstruierten Lavaldüsenapparatur gemessen. Wie Prof. Abel erläutert, bieten diese tiefen Temperaturen ideale Bedingungen, um den katalytischen Einfluss von Wasser auf chemische Reaktionen in der Gasphase zu untersuchen. Die aufwendigen quantenchemischen Rechnungen, die für die Lösung des Problems erforderlich waren, wurden in den USA durchgeführt. Die Wissenschaftler an der Georgia Augusta konnten schließlich die dynamischen Prozesse im Computer simulieren und den Effekt quantitativ deuten. Die Forschungsergebnisse bieten nach Angaben von Prof. Abel neue Ansatzpunkte für das Verständnis von Reaktionssystemen, an denen Molekül-Cluster beteiligt sind. Darüber hinaus können sie die Basis bilden für eine Vorhersage von Geschwindigkeitskonstanten in chemischen Gasphasenreaktionen mit Wasserdampf, die bisher nicht oder nur schwer zu messen sind.

Originalveröffentlichung:
E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, B. Abel*: Water Catalysis of a Radical-Molecule Gas-Phase Reaction, Science, 315, 26. Januar 2007.
Kontaktadresse:
Prof. Dr. Bernd Abel
Georg-August-Universität Göttingen
Fakultät für Chemie
Institut für Physikalische Chemie
Tammannstraße 6, 37077 Göttingen
Telefon (0551) 39-3106, Fax (0551) 39-3150
e-mail: babel@gwdg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-pc.gwdg.de/troe/b_abel/b_abel.htm

Weitere Berichte zu: Gasphase Wassermolekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

nachricht Kleinstmagnete für zukünftige Datenspeicher
30.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herzerkrankungen: Wenn weniger mehr ist

30.03.2017 | Medizin Gesundheit

Flipper auf atomarem Niveau

30.03.2017 | Physik Astronomie

Europaweite Studie zu „Smart Engineering“

30.03.2017 | Studien Analysen