Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antikörper baut zerstörtes Immunsystem wieder auf

15.02.2002


Immunbiologen von der Universität Würzburg wollen eine neuartige Therapie entwickeln, um Patienten mit einem zusammengebrochenen Immunsystem helfen zu können. Ihre bisherigen Ergebnisse sind vielversprechend.

Für die Erkennung und Vernichtung von Krankheitserregern sind im Körper des Menschen bestimmte Zellen zuständig, die Lymphozyten. Wenn ihre Zahl zu stark absinkt, dann kann das Immunsystem nicht mehr arbeiten - das ist zum Beispiel bei der Immunschwächekrankheit AIDS der Fall, aber auch nach einer Chemo- oder Strahlentherapie. Zwar regenerieren sich die Lymphozyten dann wieder von alleine, doch verläuft dieser Prozess so langsam, dass der Patient über Monate bis Jahre hinweg extrem infektanfällig bleibt.

Wissenschaftler vom Institut für Virologie und Immunbiologie der Uni Würzburg haben einen Antikörper isoliert, der die Immunzellen dazu bringt, sich schnell zu vermehren. Dazu Projektleiter Prof. Dr. Thomas Hünig: "Werden Ratten mit diesem Antikörper behandelt, dann vermehren sich ihre T-Lymphozyten rasch, ohne dass es zu erkennbaren schädlichen Nebenwirkungen kommt."

Dieser Effekt setzt auch ein, wenn die natürlich vorhandenen T-Lymphozyten der Ratten durch eine Bestrahlung zerstört wurden. Erhalten die Tiere danach gesunde T-Lymphozyten in geringer Zahl zugeführt, dann vermehren diese sich nur langsam: Erst nach einigen Monaten erreichen sie wieder fast normale Werte.

Behandelt man die Ratten aber gleichzeitig mit dem Antikörper, dann beschleunigt sich die Erholung des Immunsystems so, dass schon nach drei Wochen im Vergleich zu unbehandelten Tieren fünf- bis zehnfach erhöhte Lymphozytenzahlen im Blut gemessen werden. Außerdem zeigen die Tiere nach der Behandlung wieder eine Immunantwort gegen Modellantigene, zum Beispiel gegen artfremde Proteine.

Der verwendete monoklonale Antikörper stimuliert die T-Lymphozyten, indem er an das CD28-Oberflächenmolekül dieser Immunzellen bindet. Die Arbeitsgruppe von Prof. Hünig untersucht jetzt, ob ein Immunsystem, das durch eine CD28-Therapie wieder aufgebaut wurde, auch tatsächlich Schutz vor infektiösen Erregern verleiht. "Wir hoffen, mit diesen Untersuchungen einen Weg zu finden, über den sich die Abwehrreaktionen bei immunologisch beeinträchtigten Patienten effizient wiederherstellen lassen", so der Professor.

Diese Arbeiten laufen im Rahmen des Würzburger Sonderforschungsbereichs 479 "Erregervariabilität und Wirtsreaktion bei infektiösen Krankheitsprozessen" und werden von der Deutschen Forschungsgemeinschaft gefördert.

Die Entwicklung von der Beobachtung im Tiermodell zum Therapeutikum übernimmt die junge Biotechnologiefirma TeGenero, eine Ausgründung des Instituts. Sie wird im neuen BioMed-Zentrum des Würzburger Science-Parks arbeiten und plant, das vielversprechende Konzept in wenigen Jahren in die klinische Erprobung zu bringen.

Weitere Informationen: Prof. Dr. Thomas Hünig, T (0931) 201-3951, Fax (0931) 201-2243, E-Mail:
huenig@vim.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Antikörper Immunsystem Ratte T-Lymphozyt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics