Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die molekularen Waffen des Grippe-Erregers: Wie ein kleines Viren-Molekül Zellen zum Absterben bringt

10.01.2007
Das Influenza A-Virus, kurz IAV, löst immer wieder weltweite Grippe-Epidemien aus und tötet dabei Zehntausende, manchmal sogar Millionen von Menschen.

Eine der molekularen "Waffen", die der Erreger auf uns richtet, haben Forscher jetzt gründlich untersucht. Ihre Analyse des IAV-Moleküls PB1-F2 zeigte, dass dieses nur sehr kleine Protein für die verheerende Wirkung des Erregers zumindest mitverantwortlich sein könnte. PB1-F2 scheint Membranen der Wirtszelle zu schädigen und kann so wahrscheinlich das Absterben der Zelle auslösen. Was möglicherweise besonders bedeutsam ist: Auch bei anderen krankheitserregenden Viren gibt es Proteine mit sehr ähnlicher Funktion.

Unter Umständen beruhen die gefährlichen Auswirkungen verschiedener Virus-Infektionen also auf ganz ähnlichen molekularen Grundlagen. Neue Erkenntnisse dazu haben Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung in Braunschweig und der Universität Erlangen-Nürnberg sowie Forscher-Kollegen aus Hamburg, Berlin und Norwegen jetzt in der Fachzeitschrift Journal of Biological Chemistry veröffentlicht.

Der Grippeerreger IAV bringt eine denkbar spartanische Molekül-Ausstattung mit: Nur zehn verschiedene Proteine, so glaubte man bis vor kurzem, sind als Baupläne in seinen Genen angelegt - höher entwickelte vielzellige Organismen wie der Mensch verfügen dagegen über mehrere zehntausend, Bakterien immerhin über einige hundert. So viele braucht das Virus allerdings nicht, da es sich bei der Vermehrung und Verbreitung einfach der biochemischen Maschinerie der befallenen Wirtszelle bedient. Mittlerweile haben Forscher ein elftes Protein des Influenza A-Virus gefunden, eben das PB1-F2. Seine mutmaßliche Funktion ist es, Zellen zu töten - wahrscheinlich als Teil der "Konter-Maßnahmen" des Virus im Kampf gegen das Immunsystem des Wirtsorganismus.

... mehr zu:
»Absterben »Membran »PB1-F2 »Protein »Virus

Hinweis auf gemeinsame Viren-Strategie

Mit aufwändigen spektroskopischen, biochemischen und molekularbiologischen Methoden haben Wissenschaftler jetzt die Struktur des PB1-F2-Moleküls analysiert. Ihr Ergebnis: "Der Aufbau des Proteins lässt darauf schließen, dass es Membranen zerstört, besonders die Membranen der Mitochondrien, die die Zelle mit Energie versorgen", erklärt Dr. Victor Wray, Arbeitsgruppenleiter am Helmholtz-Zentrum für Infektionsforschung in Braunschweig.

"Interessanterweise kennt man sehr ähnliche Proteine beim AIDS-Erreger HIV und beim HTLV-Virus, das Leukämien auslösen kann", sagt Prof. Ulrich Schubert, Virologe an der Universität Erlangen-Nürnberg. "Wenn sich diese Viren tatsächlich gemeinsamer Mechanismen bedienen, dann könnten Medizin und Pharmazie vielleicht eines Tages auch mit sehr ähnlichen Strategien gegen sie vorgehen."

Quelle
Ausführliche Informationen bietet der Originalartikel: K. Bruns, N. Studtrucker, A. Sharma, T. Fossen, D. Mitzner, A. Eissmann, U. Tessmer, R. Röder, P. Henklein, V. Wray, U. Schubert: Structural characterization and oligomerization of PB1-F2, a pro-apoptotic influenza A virus protein. Journal of Biological Chemistry, 2007, Vol. 282, No. 1, pp. 353-363.

Eine Online-Version des Artikels ist unter www.jbc.org/cgi/doi/10.1074/jbc.M606494200 verfügbar.

Manfred Braun | idw
Weitere Informationen:
http://www.helmholtz-hzi.de
http://www.uni-erlangen.de
http://www.jbc.org/cgi/doi/10.1074/jbc.M606494200

Weitere Berichte zu: Absterben Membran PB1-F2 Protein Virus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie