Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Göttinger Sonderforschungsbereich 406 "Synaptische Interaktion" erfolgreich beendet

08.12.2006
Bilanz des Sonderforschungsbereichs (SFB) 406 "Synaptische Interaktion in Neuronalen Zellverbänden" nach zwölf Jahren Forschung in Göttingen

Nach zwölf Jahren erfolgreicher Neuro-Forschung ist der interdisziplinäre Göttinger Sonderforschungsbereich (SFB) 406 "Synaptische Interaktion in Neuronalen Zellverbänden" im November 2006 zu Ende gegangen.

Nach mehrfacher Begutachtung hat der SFB die maximale Förderdauer der Deutschen Forschungsgemeinschaft (DFG) erreicht. Mit einem Etat von knapp 16 Millionen Euro haben etwa 100 Wissenschaftlerinnen und Wissenschaftler in 18 Forschergruppen, verteilt auf sechs Göttinger Forschungseinrichtungen, gemeinsam grundlegende Fragen der Kommunikation von Nervenzellen im Nervensystem geklärt. Die Forscher kamen aus dem Bereich Humanmedizin der Universität Göttingen, der Biologischen Fakultät der Universität Göttingen, den Max-Planck-Instituten für Experimentelle Medizin (MPI-EM) und für Biophysikalische Chemie (MPI-BC), dem European Neuroscience Institute Göttingen (ENI-G) sowie dem Deutschen Primatenzentrum (DPZ). Die Ergebnisse wurden in über 300 wissenschaftlichen Fachbeiträgen veröffentlicht, darunter viele in den oft genannten "high-impact" Journalen Science, Nature, Cell, Neuron oder PNAS. Noch sind nicht alle Ergebnisse publiziert, weitere wichtige Veröffentlichungen sind zu erwarten. Wegen seiner vielen international beachteten Publikationen ist der SFB von der DFG als "exzellent" bewertet worden. Am 21. und 22. November hat der SFB seine Ergebnisse auf einem Abschluss-Symposium in Göttingen präsentiert und gleichzeitig vorausblickend aufgezeigt, wohin die weiterführende Forschung gehen soll. Der Abschlussbericht ist ab Januar 2007 im Internet unter www.sfb406-achievement.uni-goettingen.de zu finden.

Die am SFB 406 beteiligten Wissenschaftler wollten klären, wie hoch spezialisierte Nervenzellen Informationen in variablen Aktivitätsmustern verschlüsseln und diese Informationen innerhalb der neuronalen Netzwerke anderen Nervenzellen synaptisch (über Nervenkontakte) mitteilen. Zunächst gingen die Forscher der Frage nach, wie die Verbindungen zwischen Nervenzellen (Synapsen) während der Hirnentwicklung gebildet und dann auch wieder abgebaut oder an die veränderten Bedürfnisse angepasst werden. Ein Schwerpunkt der Forschung konzentrierte sich dann auf die Grundmechanismen der Informationsübertragung in den Synapsen selbst und, darauf aufbauend, auf die Prinzipien, wie sich ganze neuronale Netzwerke auf Veränderungen der äußeren Bedingungen plastisch anpassen. "Zwölf Jahre SFB-Forschung haben essentielle Fragen geklärt: Beispielsweise wissen wir jetzt wesentlich mehr über die Freisetzungsmechanismen der chemischen Signalstoffe (Transmitter) und auch über die Informationsverarbeitungs-Prinzipien der miteinander kommunizierenden Nervenzellen. Damit können wir nun untersuchen, weshalb und wie sich Störungen dieser elementaren Funktionen auswirken und zu (neurologischen oder psychiatrischen) Erkrankungen des Gehirns führen", sagt Prof. Dr. Diethelm W. Richter, Direktor der Abteilung Neuro- und Sinnesphysiologie am Bereich Humanmedizin der Universität Göttingen und Sprecher des SFB 406.

... mehr zu:
»DFG »ENI-G »Interaktion »Nervenzelle »Neuro

Dank der fächerübergreifenden Fragestellungen konnte der SFB 406 in vielen Bereichen traditionelle Institutsstrukturen in Göttingen überwinden. So wurden mehrere Projekte in verschiedenen wissenschaftlichen Einrichtungen interdisziplinär bearbeitet. Auch haben die Forscher ihre Erkenntnisse unmittelbar Ärzten für die medizinische Anwendung zur Verfügung gestellt und dadurch ausgedehnte Kooperationen innerhalb und außerhalb des Sonderforschungsbereiches aufgebaut. In einem "translationalen Ansatz" haben einige Forschungsergebnisse sogar neue medizinische Behandlungsmethoden eröffnet.

Der SFB 406 hat den wissenschaftlichen Nachwuchs effektiv gefördert. So konnten wissenschaftliche Mitarbeiter auf universitären Planstellen schon vor der Habilitation unabhängige Forschergruppen eigenverantwortlich leiten. 14 Wissenschaftlerinnen und Wissenschaftler aus dem SFB 406 haben Professuren an andere Universitäten in Deutschland, England, Frankreich, Schweden, Schweiz, Slowenien, USA und Kanada angenommen.

"Der für Göttingen wichtigste, durch den SFB 406 angestoßene, "Struktureffekt" ist dem kooperativen Engagement des Bereichs Humanmedizin gemeinsam mit den Max-Planck-Instituten zu verdanken. Der Schwerpunkt Neurowissenschaften am Forschungsstandort Göttingen ist dadurch zu einem nationalen und internationalen "Leuchtturm" gewachsen", sagt Prof. Dr. Diethelm W. Richter. Bereits 1999 wurde das European Neuroscience Institute Göttingen (ENI-G) gegründet, das unabhängigen Nachwuchsgruppen optimale Bedingungen für ihre Forschung bietet. Das ENI-G bildete die Keimzelle für das 2004 gegründete ENI-Net, einem Netzwerk aus 14 europäischen neurowissenschaftlichen Instituten mit 39 Nachwuchsforschergruppen. Auch das im Jahr 2002 bewilligte DFG Forschungszentrum "Molekularphysiologie des Gehirns", das 2006 zum Exzellenz-Cluster erweitert wurde, entstand letzten Endes auf der Basis des SFB 406. Auch die Nachwuchsausbildung wurde ganz erheblich verbessert: Bereits 2001 wurden die internationalen Master of Science (M.Sc.)- und Ph.D.-Studiengänge in der Molekularen Biologie und in den Neurowissenschaften an der Universität Göttingen etabliert, und das augenblickliche Engagement der Max-Planck- und Universitätsgruppen gilt dem Aufbau der Göttinger "Graduate School for Neuro- and Molecular Biosciences (GGNB)".

Weitere Informationen:
Bereich Humanmedizin - Universität Göttingen
Abt. Neuro- und Sinnesphysiologie
Prof. Dr. Diethelm W. Richter
Sprecher des SFB 406
Humboldtallee 23
37073 Göttingen
Tel. 0551/39 - 5911
Sonderforschungsbereich 406 - Geschäftsstelle
Andreas Bock
Humboldtallee 23
37073 Göttingen
Tel. 0551/39-59 26
E-Mail: abock2@gwdg.de
E-Mail: d.richter@gwdg.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.sfb406-achievement.uni-goettingen.de

Weitere Berichte zu: DFG ENI-G Interaktion Nervenzelle Neuro

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie