Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedächtnistraining für den Computer

01.09.2000


... mehr zu:
»Aktivierung »Kante »Nervenzelle »Neuron
TU Berlin, Wissenschaftsdienst "Forschung aktuell", Ausgabe September 2000 - Informationsverarbeitung

Mit künstlichen neuronalen Netzen wollen Forscher nachvollziehen, wie Informationen im Gehirn verarbeitet werden. Dazu müssen sie herausfinden, wie Neurone sich gegenseitig aktivieren und miteinander in Wechselwirkung stehen. Ein klassisches neuronales Netz entwickelte jetzt ein Wissenschaftler der TU Berlin weiter und gelangte somit zu einem besseren Verständnis von Lernmechanismen.

Denken und Lernen - das sind die Fähigkeiten, in denen der Mensch anderen Lebewesen überlegen ist. Doch wie er das tut, wie das Gehirn funktioniert, ist auch für ihn immer noch ein Geheimnis. Trotzdem gibt es Ansätze, mit denen die Fähigkeiten des menschlichen Gehirns auf den Computer übertragen werden sollen. Künstliche Intelligenz ist in diesem Zusammenhang ein Stichwort, die so genannte Boltzmann - Maschine ein weiteres.
Die Boltzmann - Maschine zählt zu den künstlichen neuronalen Netzen, jenen Rechnerarchitekturen, deren Struktur und Funktion sich an den Nervenzellen lebender Organismen orientieren. Konkret ist sie ein mathematisches Modell, mit dem per Computer simuliert wird, wie durch die Aktivität von Nervenzellen (Neuronen) eine komplexe Umwelt erfasst wird. Wenn beispielsweise die menschlichen Augen etwas sehen, dann geschieht das, indem Licht-Photonen bestimmte Nervenzellen aktivieren. Im Computermodell gibt der Wissenschaftler das durch Zahlen (1 für hell, 0 für dunkel, 0,5 für grau) ein und aktiviert somit die Eingabeneuronen.
Ähnlich dem biologischen Vorbild des Gehirns sind alle Neuronen durch synaptische Verbindungsstärken miteinander gekoppelt. Im mathematischen Modell wird das realisiert, indem Verbindungen zwischen den Neuronen unterschiedlich gewichtet werden. Dadurch können die Eingabeneuronen ihre Aktivierung an innere Neuronen weitergeben. Allerdings nur an die, zu denen eine starke Verbindung besteht. Neurone, die insgesamt viel Aktivierung erhalten, werden mit großer Wahrscheinlichkeit selbst aktiv. Auf diese Weise unterliegen die Aktivierungszustände einer Zufallsverteilung, der aus der Thermodynamik bekannten Boltzmann - Verteilung.
Cornelius Weber, Informatiker der Technischen Universität Berlin, hat jetzt in seiner Dissertation die Boltzmann - Maschine weiterentwickelt. In dem klassischen Modell gibt es nur die mathematischen Aktivierungszustände +1 und -1. Zu diesen hat Weber die Aktivierung Null eingeführt, das heißt, im Computer-Modell können innere Neurone jetzt auch inaktiv sein. Damit kann Cornelius Weber der Frage nachgehen, wie beispielsweise ein Bild wiedergegeben wird, wenn nur wenige innere Neurone aktiv sind. Weber vergleicht diese Aufgabenstellung mit der Frage: Warum werden Neurone im visuellen Areal der Großhirnrinde aktiv, wenn sie einen bestimmten Helligkeitskontrast, beispielsweise eine Kante, wahrnehmen? Kern der Untersuchungen ist das Verständnis, wie Neurone Information repräsentieren.
Eine besondere Rolle spielt dabei das Lernen der Verbindungsstärken. Solange die Daten anliegen, die Eingabeneurone also wie ein Auge das Bild sehen, befindet sich das neuronale Netz in der so genannten Wachphase. In dieser Phase verstärken die Neurone, die gerade aktiv sind, ihre Verbindungen. Häufig anliegende Aktivitätszustände werden dadurch stabilisiert. Die Fachleute sprechen dabei vom Hebbschen Lernen. Wenn keine Daten von außen eingegeben werden, in der so genannten Schlafphase, werden Neurone spontan aktiv. Es findet anti-Hebbsches Lernen statt.
In dem Modell von Cornelius Weber entstehen durch die Einführung der Aktivierung Null beim Lernen Neurone, die durch Kanten, also Helligkeitskontraste, aktiviert werden. Nur dadurch entstehen biologisch plausible Resultate, mit denen Lernmechanismen, die dem menschlichen Gehirn zugrunde liegen, verstanden werden können. Und das ist letztlich das Ziel von künstlichen neuronalen Netzen. inhe

Datenbank
Ansprechpartner: Dipl.-Phys. Cornelius Weber, Technische Universität Berlin, Institut für Kommunikations- und Softwaretechnik
Fachgebiet: Neuronale Informationsverarbeitung
Kontakt: Franklinstraße 28/29, 10623 Berlin, Tel.: 030/314-25542, E-Mail: cweber@cs.tu-berlin.de

Der Wissenschaftsdienst "Forschung aktuell" und der dazugehörige Expertendienst ist ein Service des Pressereferats der TU Berlin für Journalisten und andere Interessenten. Er entsteht in Zusammenarbeit mit den Wissenschaftlerinnen und Wissenschaftlern und soll einer breiteren Öffentlichkeit Einblicke in aktuelle Forschungsprojekte ermöglichen. Sie können den Dienst auch per E-Mail unter der Internetadresse http://www.tu-berlin.de/presse/wissenschaftsdienst/index.html
 abonnieren. Er erscheint zunächst viermal jährlich. Diese Texte stehen Ihnen zur Veröffentlichung frei. Der Abdruck ist honorarfrei, Belegexemplar erbeten.

Informationen erteilt Ihnen gern Stefanie Terp: Tel.: 030/314-23820, E-Mail: steffi.terp@tu-berlin.de.

Ramona Ehret |

Weitere Berichte zu: Aktivierung Kante Nervenzelle Neuron

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung