Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedächtnistraining für den Computer

01.09.2000


... mehr zu:
»Aktivierung »Kante »Nervenzelle »Neuron
TU Berlin, Wissenschaftsdienst "Forschung aktuell", Ausgabe September 2000 - Informationsverarbeitung

Mit künstlichen neuronalen Netzen wollen Forscher nachvollziehen, wie Informationen im Gehirn verarbeitet werden. Dazu müssen sie herausfinden, wie Neurone sich gegenseitig aktivieren und miteinander in Wechselwirkung stehen. Ein klassisches neuronales Netz entwickelte jetzt ein Wissenschaftler der TU Berlin weiter und gelangte somit zu einem besseren Verständnis von Lernmechanismen.

Denken und Lernen - das sind die Fähigkeiten, in denen der Mensch anderen Lebewesen überlegen ist. Doch wie er das tut, wie das Gehirn funktioniert, ist auch für ihn immer noch ein Geheimnis. Trotzdem gibt es Ansätze, mit denen die Fähigkeiten des menschlichen Gehirns auf den Computer übertragen werden sollen. Künstliche Intelligenz ist in diesem Zusammenhang ein Stichwort, die so genannte Boltzmann - Maschine ein weiteres.
Die Boltzmann - Maschine zählt zu den künstlichen neuronalen Netzen, jenen Rechnerarchitekturen, deren Struktur und Funktion sich an den Nervenzellen lebender Organismen orientieren. Konkret ist sie ein mathematisches Modell, mit dem per Computer simuliert wird, wie durch die Aktivität von Nervenzellen (Neuronen) eine komplexe Umwelt erfasst wird. Wenn beispielsweise die menschlichen Augen etwas sehen, dann geschieht das, indem Licht-Photonen bestimmte Nervenzellen aktivieren. Im Computermodell gibt der Wissenschaftler das durch Zahlen (1 für hell, 0 für dunkel, 0,5 für grau) ein und aktiviert somit die Eingabeneuronen.
Ähnlich dem biologischen Vorbild des Gehirns sind alle Neuronen durch synaptische Verbindungsstärken miteinander gekoppelt. Im mathematischen Modell wird das realisiert, indem Verbindungen zwischen den Neuronen unterschiedlich gewichtet werden. Dadurch können die Eingabeneuronen ihre Aktivierung an innere Neuronen weitergeben. Allerdings nur an die, zu denen eine starke Verbindung besteht. Neurone, die insgesamt viel Aktivierung erhalten, werden mit großer Wahrscheinlichkeit selbst aktiv. Auf diese Weise unterliegen die Aktivierungszustände einer Zufallsverteilung, der aus der Thermodynamik bekannten Boltzmann - Verteilung.
Cornelius Weber, Informatiker der Technischen Universität Berlin, hat jetzt in seiner Dissertation die Boltzmann - Maschine weiterentwickelt. In dem klassischen Modell gibt es nur die mathematischen Aktivierungszustände +1 und -1. Zu diesen hat Weber die Aktivierung Null eingeführt, das heißt, im Computer-Modell können innere Neurone jetzt auch inaktiv sein. Damit kann Cornelius Weber der Frage nachgehen, wie beispielsweise ein Bild wiedergegeben wird, wenn nur wenige innere Neurone aktiv sind. Weber vergleicht diese Aufgabenstellung mit der Frage: Warum werden Neurone im visuellen Areal der Großhirnrinde aktiv, wenn sie einen bestimmten Helligkeitskontrast, beispielsweise eine Kante, wahrnehmen? Kern der Untersuchungen ist das Verständnis, wie Neurone Information repräsentieren.
Eine besondere Rolle spielt dabei das Lernen der Verbindungsstärken. Solange die Daten anliegen, die Eingabeneurone also wie ein Auge das Bild sehen, befindet sich das neuronale Netz in der so genannten Wachphase. In dieser Phase verstärken die Neurone, die gerade aktiv sind, ihre Verbindungen. Häufig anliegende Aktivitätszustände werden dadurch stabilisiert. Die Fachleute sprechen dabei vom Hebbschen Lernen. Wenn keine Daten von außen eingegeben werden, in der so genannten Schlafphase, werden Neurone spontan aktiv. Es findet anti-Hebbsches Lernen statt.
In dem Modell von Cornelius Weber entstehen durch die Einführung der Aktivierung Null beim Lernen Neurone, die durch Kanten, also Helligkeitskontraste, aktiviert werden. Nur dadurch entstehen biologisch plausible Resultate, mit denen Lernmechanismen, die dem menschlichen Gehirn zugrunde liegen, verstanden werden können. Und das ist letztlich das Ziel von künstlichen neuronalen Netzen. inhe

Datenbank
Ansprechpartner: Dipl.-Phys. Cornelius Weber, Technische Universität Berlin, Institut für Kommunikations- und Softwaretechnik
Fachgebiet: Neuronale Informationsverarbeitung
Kontakt: Franklinstraße 28/29, 10623 Berlin, Tel.: 030/314-25542, E-Mail: cweber@cs.tu-berlin.de

Der Wissenschaftsdienst "Forschung aktuell" und der dazugehörige Expertendienst ist ein Service des Pressereferats der TU Berlin für Journalisten und andere Interessenten. Er entsteht in Zusammenarbeit mit den Wissenschaftlerinnen und Wissenschaftlern und soll einer breiteren Öffentlichkeit Einblicke in aktuelle Forschungsprojekte ermöglichen. Sie können den Dienst auch per E-Mail unter der Internetadresse http://www.tu-berlin.de/presse/wissenschaftsdienst/index.html
 abonnieren. Er erscheint zunächst viermal jährlich. Diese Texte stehen Ihnen zur Veröffentlichung frei. Der Abdruck ist honorarfrei, Belegexemplar erbeten.

Informationen erteilt Ihnen gern Stefanie Terp: Tel.: 030/314-23820, E-Mail: steffi.terp@tu-berlin.de.

Ramona Ehret |

Weitere Berichte zu: Aktivierung Kante Nervenzelle Neuron

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops