Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Nervenzellen im Direktkontakt

27.10.2006
Nachweis für die direkte Verrechnung von optischen Flussfeldern zwischen zwei Hemisphären im Sehzentrum von Fliegen erbracht

Erstmalig haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München zeigen können, wie zwei Nervenzellen aus unterschiedlichen Hemisphären im Sehzentrum miteinander korrespondieren. Dieser in seiner Einfachheit verblüffende Schaltplan könnte irgendwann auch eine Vorlage liefern für Algorithmen, die in technischen Systemen zum Einsatz kommen. (Nature Neuroscience, 10. Oktober 2006)


Eine Fliege, die einen Korridor entlangfliegt, erzeugt durch ihre Eigenbewegung eine ständige Verschiebung der Bilder der Umgebung auf ihren Augen (durch Pfeile illustriert). Dieses "Vektorfeld" muss zur Kontrolle und Korrektur des Flugkurses auf einer höheren Ebene des Sehzentrums, der Lobula-Platte, analysiert werden. Für die Kontrolle von Drehungen ist die direkte Verschaltung zweier Nervenzellen notwendig, der HSE-Zelle (rechts) und der H2-Zelle (links). Bild: MPI für Neurobiologie - Robert Schorner

Bewegungen im Raum erzeugen bei Mensch und Tier sogenannte optische Flussfelder, die für die jeweilige Bewegung charakteristisch sind. Bei einer Vorwärtsbewegung fließen die Objekte seitlich vorbei, Objekte frontal vorne vergrößern sich und weit entfernte Objekte ändern sich beinahe gar nicht. Auf höherer Ebene im Sehzentrum des Gehirns muss daher eine Verrechnung der visuellen Information stattfinden, damit die Tiere ihre eigene Bewegung von der bewegten Umgebung unterscheiden können und eventuell eine Kurskorrektur vornehmen können. Wichtig für die Analyse der Flussfelder ist, dass die Bewegungsinformation von beiden Augen zusammen geführt wird, um das gesamte Flußfeld beurteilen zu können. In ihrer aktuellen Studie haben Karl Farrow, Jürgen Haag und Alexander Borst erstmalig die direkte Verschaltung von zwei Nervenzellen nachgewiesen, die aus der jeweils anderen Gehirnhälfte stammen, und so die Bewegungssignale von beiden Facettenaugen der Fliege miteinander kombinieren.

Die Nervenzellen, die optische Flussfelder analysieren, die sogenannten Tangentialzellen, befinden sich bei der Schmeißfliege in der Lobula-Platte. Pro Gehirnhälfte existieren nur 60 solcher Tangentialzellen, und jede dieser 60 Zellen ist individuell identifizierbar. Die Martinsrieder Neurowissenschaftler haben eine Zelle ins Visier genommen, die H2-Zelle. Diese Zelle zeigt eine starke Präferenz für Rotations-Flussfelder, so wie sie bei Drehung der Fliege um ihre Körperhochachse auftreten. Das Interessante daran war, dass diese Zelle zunächst nur auf Bewegungen vor ihrem eigenen Auge (ipsilateral) zu reagieren scheint, für Bewegungen vor dem anderen Auge (contralateral) dagegen offenbar blind ist. Kombiniert man jedoch die ipsilateralen mit contralateralen Bewegungsreizen, so erkennt man, dass letztere sehr wohl die Reaktionen auf ipsilaterale Bewegungsreize modulieren. "Der Präferenz der H2-Zelle für Drehreize liegt also eine nicht-lineare Verrechnung der Bewegungsreize von beiden Augen zu Grunde, und den Ursachen für diese Nicht-Linearität wollten wir auf die Spur kommen", so Alexander Borst.

Der nächste Schritt bestand darin, den Schaltplan der Tangentialzellen der Lobula-Platte genau zu analysieren. Das geschah auf der Basis einer Vielzahl von Experimenten, in denen die Verbindungen zwischen den Zellen innerhalb einer Lobula-Platte und denen zwischen den beiden Hemisphären untersucht wurden. Es ergaben sich letztendlich zwei Wege, auf denen die Bewegungsinformation von der einen Gehirnhälfte die H2-Zelle in der anderen erreichen konnte: zum einen direkt von der sogenannten HSE-Zelle, welche mit der H2-Zelle der gegenüberliegenden Hemisphäre elektrisch gekoppelt ist, zum anderen indirekt über die CH-Zelle, welche über mehrere Stationen Informationen von der anderen Gehirnhälfte bekommt und die H2-Zelle, die auf der gleichen Seite wie sie liegt, über chemische Synapsen hemmt. Beide Verbindungsbahnen waren im Prinzip dazu geeignet, den beschriebenen Effekt zu erzielen, die Frage war nur, welche von beiden ist die entscheidende?

Die Max-Planck-Wissenschaftler blockierten deshalb die beiden in Frage kommenden Bahnen selektiv durch Laserablation (die Zelle wird mit einem Fluoreszenzfarbstoff gefüllt, der bei starker Anregung toxisch wirkt) und testeten anschließend die Rotationsempfindlichkeit der H2-Zelle. In einer langen Serie dieser technisch sehr schwierigen Experimente gelang dann der eindeutige Nachweis: Wurde die ipsilaterale CH-Zelle zerstört, zeigte sich kein Effekt auf die Rotationsempfindlichkeit der H2-Zelle. Wurde jedoch die contralaterale HSE-Zelle aus dem Schaltkreis entfernt, war die Rotationsempfindlichkeit der H2-Zelle verschwunden. Jetzt war sie tatsächlich für Bewegungsreize vor dem anderen Auge blind, egal ob sie mit ipsilateralen Bewegungsreizen kombiniert war oder nicht.

"Das geniale an dieser Verschaltung ist die Einfachheit: Mit einer einzigen elektrischen Kopplung zweier Zellen aus den beiden Gehirnhälften wird eine Zelle selektiv für Rotations-Flussfelder", schwärmt Alexander Borst über die Entdeckung. Ob die Natur bei Säugertieren auf ähnlich einfache Mechanismen gebaut hat, ist noch unklar - noch ist die Verschaltung der Nervenzellen in den entsprechenden Arealen der Großhirnrinde nicht hinreichend aufgeklärt, um solche Experimente sinnvoll durchführen zu können. Und ob sich jemals Effekte zeigen, wenn bei den vielen Milliarden Zellen der Großhirnrinde eine einzelne Zelle herausgenommen wird, ist eher fraglich.

Das bedeutet freilich nicht, dass der Befund der Martinsrieder Fliegenforscher ohne Konsequenzen für andere Bereiche der Wissenschaft bleibt: So setzen z.B. Ingenieure bei der Entwicklung autonom navigierender Roboter und Fahr-Assistenz-Systeme gerne auf einfache und robuste Algorithmen, wie sie die Natur in Insekten realisiert hat. Die Mechanismen der optischen Flussfeld-Analyse eignen sich daher ganz hervorragend für eine technische Umsetzung. Im Rahmen zweier vom BMBF geförderter Projekte (Bernstein Zentrum München und ‚Cognition in Technical Systems’ (CoTeSys)) werden die Martinsrieder Neurobiologen gemeinsam mit ihren Kollegen von der TU München die nächsten Jahre verstärkt daran arbeiten. Die Abteilung Neuronale Informationsverarbeitung unter Leitung von Alexander Borst ist auch am erst kürzlich an der Münchner Ludwig-Maximilians-Universität mit Exzellenz ausgezeichneten Graduierten-Ausbildung "School of Systemic Neurosciences" beteiligt.

Originalveröffentlichung:

Karl Farrow, Jürgen Haag & Alexander Borst
Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron

Nature Neuroscience, October 10, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Gehirnhälfte H2-Zelle Nervenzelle Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften