Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Nervenzellen im Direktkontakt

27.10.2006
Nachweis für die direkte Verrechnung von optischen Flussfeldern zwischen zwei Hemisphären im Sehzentrum von Fliegen erbracht

Erstmalig haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München zeigen können, wie zwei Nervenzellen aus unterschiedlichen Hemisphären im Sehzentrum miteinander korrespondieren. Dieser in seiner Einfachheit verblüffende Schaltplan könnte irgendwann auch eine Vorlage liefern für Algorithmen, die in technischen Systemen zum Einsatz kommen. (Nature Neuroscience, 10. Oktober 2006)


Eine Fliege, die einen Korridor entlangfliegt, erzeugt durch ihre Eigenbewegung eine ständige Verschiebung der Bilder der Umgebung auf ihren Augen (durch Pfeile illustriert). Dieses "Vektorfeld" muss zur Kontrolle und Korrektur des Flugkurses auf einer höheren Ebene des Sehzentrums, der Lobula-Platte, analysiert werden. Für die Kontrolle von Drehungen ist die direkte Verschaltung zweier Nervenzellen notwendig, der HSE-Zelle (rechts) und der H2-Zelle (links). Bild: MPI für Neurobiologie - Robert Schorner

Bewegungen im Raum erzeugen bei Mensch und Tier sogenannte optische Flussfelder, die für die jeweilige Bewegung charakteristisch sind. Bei einer Vorwärtsbewegung fließen die Objekte seitlich vorbei, Objekte frontal vorne vergrößern sich und weit entfernte Objekte ändern sich beinahe gar nicht. Auf höherer Ebene im Sehzentrum des Gehirns muss daher eine Verrechnung der visuellen Information stattfinden, damit die Tiere ihre eigene Bewegung von der bewegten Umgebung unterscheiden können und eventuell eine Kurskorrektur vornehmen können. Wichtig für die Analyse der Flussfelder ist, dass die Bewegungsinformation von beiden Augen zusammen geführt wird, um das gesamte Flußfeld beurteilen zu können. In ihrer aktuellen Studie haben Karl Farrow, Jürgen Haag und Alexander Borst erstmalig die direkte Verschaltung von zwei Nervenzellen nachgewiesen, die aus der jeweils anderen Gehirnhälfte stammen, und so die Bewegungssignale von beiden Facettenaugen der Fliege miteinander kombinieren.

Die Nervenzellen, die optische Flussfelder analysieren, die sogenannten Tangentialzellen, befinden sich bei der Schmeißfliege in der Lobula-Platte. Pro Gehirnhälfte existieren nur 60 solcher Tangentialzellen, und jede dieser 60 Zellen ist individuell identifizierbar. Die Martinsrieder Neurowissenschaftler haben eine Zelle ins Visier genommen, die H2-Zelle. Diese Zelle zeigt eine starke Präferenz für Rotations-Flussfelder, so wie sie bei Drehung der Fliege um ihre Körperhochachse auftreten. Das Interessante daran war, dass diese Zelle zunächst nur auf Bewegungen vor ihrem eigenen Auge (ipsilateral) zu reagieren scheint, für Bewegungen vor dem anderen Auge (contralateral) dagegen offenbar blind ist. Kombiniert man jedoch die ipsilateralen mit contralateralen Bewegungsreizen, so erkennt man, dass letztere sehr wohl die Reaktionen auf ipsilaterale Bewegungsreize modulieren. "Der Präferenz der H2-Zelle für Drehreize liegt also eine nicht-lineare Verrechnung der Bewegungsreize von beiden Augen zu Grunde, und den Ursachen für diese Nicht-Linearität wollten wir auf die Spur kommen", so Alexander Borst.

Der nächste Schritt bestand darin, den Schaltplan der Tangentialzellen der Lobula-Platte genau zu analysieren. Das geschah auf der Basis einer Vielzahl von Experimenten, in denen die Verbindungen zwischen den Zellen innerhalb einer Lobula-Platte und denen zwischen den beiden Hemisphären untersucht wurden. Es ergaben sich letztendlich zwei Wege, auf denen die Bewegungsinformation von der einen Gehirnhälfte die H2-Zelle in der anderen erreichen konnte: zum einen direkt von der sogenannten HSE-Zelle, welche mit der H2-Zelle der gegenüberliegenden Hemisphäre elektrisch gekoppelt ist, zum anderen indirekt über die CH-Zelle, welche über mehrere Stationen Informationen von der anderen Gehirnhälfte bekommt und die H2-Zelle, die auf der gleichen Seite wie sie liegt, über chemische Synapsen hemmt. Beide Verbindungsbahnen waren im Prinzip dazu geeignet, den beschriebenen Effekt zu erzielen, die Frage war nur, welche von beiden ist die entscheidende?

Die Max-Planck-Wissenschaftler blockierten deshalb die beiden in Frage kommenden Bahnen selektiv durch Laserablation (die Zelle wird mit einem Fluoreszenzfarbstoff gefüllt, der bei starker Anregung toxisch wirkt) und testeten anschließend die Rotationsempfindlichkeit der H2-Zelle. In einer langen Serie dieser technisch sehr schwierigen Experimente gelang dann der eindeutige Nachweis: Wurde die ipsilaterale CH-Zelle zerstört, zeigte sich kein Effekt auf die Rotationsempfindlichkeit der H2-Zelle. Wurde jedoch die contralaterale HSE-Zelle aus dem Schaltkreis entfernt, war die Rotationsempfindlichkeit der H2-Zelle verschwunden. Jetzt war sie tatsächlich für Bewegungsreize vor dem anderen Auge blind, egal ob sie mit ipsilateralen Bewegungsreizen kombiniert war oder nicht.

"Das geniale an dieser Verschaltung ist die Einfachheit: Mit einer einzigen elektrischen Kopplung zweier Zellen aus den beiden Gehirnhälften wird eine Zelle selektiv für Rotations-Flussfelder", schwärmt Alexander Borst über die Entdeckung. Ob die Natur bei Säugertieren auf ähnlich einfache Mechanismen gebaut hat, ist noch unklar - noch ist die Verschaltung der Nervenzellen in den entsprechenden Arealen der Großhirnrinde nicht hinreichend aufgeklärt, um solche Experimente sinnvoll durchführen zu können. Und ob sich jemals Effekte zeigen, wenn bei den vielen Milliarden Zellen der Großhirnrinde eine einzelne Zelle herausgenommen wird, ist eher fraglich.

Das bedeutet freilich nicht, dass der Befund der Martinsrieder Fliegenforscher ohne Konsequenzen für andere Bereiche der Wissenschaft bleibt: So setzen z.B. Ingenieure bei der Entwicklung autonom navigierender Roboter und Fahr-Assistenz-Systeme gerne auf einfache und robuste Algorithmen, wie sie die Natur in Insekten realisiert hat. Die Mechanismen der optischen Flussfeld-Analyse eignen sich daher ganz hervorragend für eine technische Umsetzung. Im Rahmen zweier vom BMBF geförderter Projekte (Bernstein Zentrum München und ‚Cognition in Technical Systems’ (CoTeSys)) werden die Martinsrieder Neurobiologen gemeinsam mit ihren Kollegen von der TU München die nächsten Jahre verstärkt daran arbeiten. Die Abteilung Neuronale Informationsverarbeitung unter Leitung von Alexander Borst ist auch am erst kürzlich an der Münchner Ludwig-Maximilians-Universität mit Exzellenz ausgezeichneten Graduierten-Ausbildung "School of Systemic Neurosciences" beteiligt.

Originalveröffentlichung:

Karl Farrow, Jürgen Haag & Alexander Borst
Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron

Nature Neuroscience, October 10, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Gehirnhälfte H2-Zelle Nervenzelle Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie