Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in die Struktur der molekularen Spleißmaschine

23.10.2006
Um die genetische Information des Zellkerns in Proteine zu übersetzen, wird die RNA in menschlichen Zellkernen von einer komplexen molekularen Maschine, dem Spleißosom, präzise zugeschnitten. Wissenschaftlern am Max-Planck-Institut für biophysikalische Chemie in Göttingen ist es jetzt gelungen, erstmals eine dreidimensionale Karte der größten Untereinheit des Spleißosoms zu bestimmen. (Molecular Cell, 20.Okt)

In menschlichen Zellen ist der genetische Bauplan von Proteinen in langen Desoxyribonukleinsäure (DNA)-Molekülen verschlüsselt. Um die Information für die Proteinherstellung nutzbar zu machen, müssen im Zellkern zunächst Ribonukleinsäure-(RNA)-Kopien der DNA erstellt werden. Diese RNA-Kopien können jedoch erst dann für die Proteinherstellung verwendet werden, wenn durch präzisen Zuschnitt einige nicht benötigte interne Bereiche (sog. "Introns") entfernt und die informationsrelevanten Bereiche ("Exons") neu verbunden worden sind.

Das Entfernen der Introns wird in Anlehnung an das Trennen und Verknüpfen von Seilenden in der Seefahrt als "Spleißen" bezeichnet. Komplexe Makromoleküle, die so genannten Spleißosomen, führen diese Aufgabe aus. Sie bestehen ihrerseits aus über 150 verschiedenen Proteinen sowie einigen RNA-Molekülen, die sich für jede Runde von Schnitt und Verknüpfung auf der RNA zusammenbauen müssen. Dazu werden im menschlichen Zellkern aus der Vielzahl dieser Einzelkomponenten zunächst eine Reihe vorgefertigter Komplexe (sog. snRNPs) bereitgestellt, die dann den Zusammenbau des vollständigen Spleißosoms in wenigen Schritten ermöglichen. Spleißosomen wählen die zu verknüpfenden Exons gewebespezifisch aus und erhöhen somit dramatisch die Proteinvielfalt im menschlichen Körper. Die Bedeutung dieses Vorgangs erschließt sich aus zahlreichen, mit Fehlfunktionen des Spleißens assoziierten Erkrankungen, darunter viele bösartige Tumorkrankheiten, in denen die Präzision der Exon-Verknüpfung gestört ist.

Wissenschaftlern des Max-Planck-Instituts für biophysikalische Chemie ist es jetzt gelungen, die dreidimensionale (3D) Struktur der größten Untereinheit des Spleißosoms (des sog. "U4/U6.U5 tri-snRNP") mit Hilfe eines hochauflösenden Elektronenmikroskops zu entschlüsseln und so dessen Aufbau in einer präzisen Karte darzustellen. Eine Schlüsselkomponente der korrekten Exonerkennung ist das im tri-snRNP vorkommende RNA-Mokekül "U5 snRNA", das nun einem kleinen zentralen Bereich des nur 30 Millionstel Millimeter großen tri-snRNP direkt zugeordnet werden konnte.

Interessanterweise ist der tri-snRNP wiederum aus zwei Untereinheiten, dem U4/U6 snRNP und dem U5 snRNP aufgebaut, die zusätzlich jeweils separat aus menschlichen Zellkernen gewonnen und in ihrer 3D Struktur untersucht werden konnten. Dabei konnte gezeigt werden, dass die molekularen Maschinen auch in Abwesenheit eines RNA-Substrates ständig in Bewegung sind und sich das U5 snRNA-Molekül in einem hochdynamischen Teil des tri-snRNP befindet. Dieser Teil wird beim Zusammenbau des tri-snRNPs aus seinen Komponenten von einer gekrümmten in eine längliche Form "verbogen", wodurch seine Beweglichkeit eingeschränkt, aber nicht vollständig aufgehoben wird. Zukünftige Studien sollen nun die strukturelle Grundlage der Exon-Erkennung näher untersuchen.

Bei der hier verwendeten Methode der 3D Kryo-Elektronenmikroskopie werden die Makromoleküle vor den schädigenden Einflüssen des Elektronenstrahls geschützt, indem sie umgeben von Eis auf -180°C abgekühlt werden. Dann werden, ähnlich wie bei der medizischen Computertomographie, Projektionsbilder der Moleküle erstellt, aus denen anschließend mittels aufwendiger Rechenverfahren die Struktur bestimmt wird. In Zusammenarbeit mit Wissenschaftlern der Abteilung für Zelluläre Biochemie von Prof. Reinhard Lührmann und der "Bio-Future"-Forschungsgruppe für 3D Kryo-Elektronenmikroskopie von Dr. Holger Stark konnten Dr. Björn Sander, Dr. Monika Golas und Dr. Berthold Kastner die Molekülkomplexe aus Zellkulturen isolieren und erstmals für die 3D Kryo-Elektronenmikroskopie verfügbar machen. Hierbei waren in der Arbeitsgruppe entwickelte, neue Verfahren zur Probenaufbereitung und Strukturberechnung entscheidend, die eine Auflösung der tri-snRNP Struktur von 2 Millionstel Millimetern ermöglichten.

Originalveröffentlichung:
Bjoern Sander, Monika M. Golas, Evgeny M. Makarov, Hero Brahms, Berthold Kastner, Reinhard Lührmann, and Holger Stark: Organization of Core Spliceosomal Components U5 snRNA Loop I and U4/U6 Di-snRNP within U4/U6.U5 Tri-snRNP as Revealed by Electron Cryomicroscopy. Molecular Cell 24, 267-278 (20.Oktober 2006). DOI 10.1016/j.molcel.2006.08.021
Weitere Informationen:
Dr. Holger Stark, Max-Planck-Institut für biophysikalische Chemie, FG 3D Kryo-Elektronenmikroskopie, Am Fassberg 11, 37077 Göttingen, Tel: 0551 201-1305, Fax: -1197

Dr. Christoph Nothdurft | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/stark/
http://www.mpibpc.mpg.de/groups/pr/PR/2006/06_22/

Weitere Berichte zu: Kryo-Elektronenmikroskopie RNA Spleißosom U4/U6 Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften