Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in die Struktur der molekularen Spleißmaschine

23.10.2006
Um die genetische Information des Zellkerns in Proteine zu übersetzen, wird die RNA in menschlichen Zellkernen von einer komplexen molekularen Maschine, dem Spleißosom, präzise zugeschnitten. Wissenschaftlern am Max-Planck-Institut für biophysikalische Chemie in Göttingen ist es jetzt gelungen, erstmals eine dreidimensionale Karte der größten Untereinheit des Spleißosoms zu bestimmen. (Molecular Cell, 20.Okt)

In menschlichen Zellen ist der genetische Bauplan von Proteinen in langen Desoxyribonukleinsäure (DNA)-Molekülen verschlüsselt. Um die Information für die Proteinherstellung nutzbar zu machen, müssen im Zellkern zunächst Ribonukleinsäure-(RNA)-Kopien der DNA erstellt werden. Diese RNA-Kopien können jedoch erst dann für die Proteinherstellung verwendet werden, wenn durch präzisen Zuschnitt einige nicht benötigte interne Bereiche (sog. "Introns") entfernt und die informationsrelevanten Bereiche ("Exons") neu verbunden worden sind.

Das Entfernen der Introns wird in Anlehnung an das Trennen und Verknüpfen von Seilenden in der Seefahrt als "Spleißen" bezeichnet. Komplexe Makromoleküle, die so genannten Spleißosomen, führen diese Aufgabe aus. Sie bestehen ihrerseits aus über 150 verschiedenen Proteinen sowie einigen RNA-Molekülen, die sich für jede Runde von Schnitt und Verknüpfung auf der RNA zusammenbauen müssen. Dazu werden im menschlichen Zellkern aus der Vielzahl dieser Einzelkomponenten zunächst eine Reihe vorgefertigter Komplexe (sog. snRNPs) bereitgestellt, die dann den Zusammenbau des vollständigen Spleißosoms in wenigen Schritten ermöglichen. Spleißosomen wählen die zu verknüpfenden Exons gewebespezifisch aus und erhöhen somit dramatisch die Proteinvielfalt im menschlichen Körper. Die Bedeutung dieses Vorgangs erschließt sich aus zahlreichen, mit Fehlfunktionen des Spleißens assoziierten Erkrankungen, darunter viele bösartige Tumorkrankheiten, in denen die Präzision der Exon-Verknüpfung gestört ist.

Wissenschaftlern des Max-Planck-Instituts für biophysikalische Chemie ist es jetzt gelungen, die dreidimensionale (3D) Struktur der größten Untereinheit des Spleißosoms (des sog. "U4/U6.U5 tri-snRNP") mit Hilfe eines hochauflösenden Elektronenmikroskops zu entschlüsseln und so dessen Aufbau in einer präzisen Karte darzustellen. Eine Schlüsselkomponente der korrekten Exonerkennung ist das im tri-snRNP vorkommende RNA-Mokekül "U5 snRNA", das nun einem kleinen zentralen Bereich des nur 30 Millionstel Millimeter großen tri-snRNP direkt zugeordnet werden konnte.

Interessanterweise ist der tri-snRNP wiederum aus zwei Untereinheiten, dem U4/U6 snRNP und dem U5 snRNP aufgebaut, die zusätzlich jeweils separat aus menschlichen Zellkernen gewonnen und in ihrer 3D Struktur untersucht werden konnten. Dabei konnte gezeigt werden, dass die molekularen Maschinen auch in Abwesenheit eines RNA-Substrates ständig in Bewegung sind und sich das U5 snRNA-Molekül in einem hochdynamischen Teil des tri-snRNP befindet. Dieser Teil wird beim Zusammenbau des tri-snRNPs aus seinen Komponenten von einer gekrümmten in eine längliche Form "verbogen", wodurch seine Beweglichkeit eingeschränkt, aber nicht vollständig aufgehoben wird. Zukünftige Studien sollen nun die strukturelle Grundlage der Exon-Erkennung näher untersuchen.

Bei der hier verwendeten Methode der 3D Kryo-Elektronenmikroskopie werden die Makromoleküle vor den schädigenden Einflüssen des Elektronenstrahls geschützt, indem sie umgeben von Eis auf -180°C abgekühlt werden. Dann werden, ähnlich wie bei der medizischen Computertomographie, Projektionsbilder der Moleküle erstellt, aus denen anschließend mittels aufwendiger Rechenverfahren die Struktur bestimmt wird. In Zusammenarbeit mit Wissenschaftlern der Abteilung für Zelluläre Biochemie von Prof. Reinhard Lührmann und der "Bio-Future"-Forschungsgruppe für 3D Kryo-Elektronenmikroskopie von Dr. Holger Stark konnten Dr. Björn Sander, Dr. Monika Golas und Dr. Berthold Kastner die Molekülkomplexe aus Zellkulturen isolieren und erstmals für die 3D Kryo-Elektronenmikroskopie verfügbar machen. Hierbei waren in der Arbeitsgruppe entwickelte, neue Verfahren zur Probenaufbereitung und Strukturberechnung entscheidend, die eine Auflösung der tri-snRNP Struktur von 2 Millionstel Millimetern ermöglichten.

Originalveröffentlichung:
Bjoern Sander, Monika M. Golas, Evgeny M. Makarov, Hero Brahms, Berthold Kastner, Reinhard Lührmann, and Holger Stark: Organization of Core Spliceosomal Components U5 snRNA Loop I and U4/U6 Di-snRNP within U4/U6.U5 Tri-snRNP as Revealed by Electron Cryomicroscopy. Molecular Cell 24, 267-278 (20.Oktober 2006). DOI 10.1016/j.molcel.2006.08.021
Weitere Informationen:
Dr. Holger Stark, Max-Planck-Institut für biophysikalische Chemie, FG 3D Kryo-Elektronenmikroskopie, Am Fassberg 11, 37077 Göttingen, Tel: 0551 201-1305, Fax: -1197

Dr. Christoph Nothdurft | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/stark/
http://www.mpibpc.mpg.de/groups/pr/PR/2006/06_22/

Weitere Berichte zu: Kryo-Elektronenmikroskopie RNA Spleißosom U4/U6 Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften