Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immer schön auf Abstand bleiben

18.10.2006
Dresdner Max-Planck-Forscher haben herausgefunden, warum sich biologische Lasten beim Transport durch die Zelle nicht verhaken

Wie sich Transportproteine in der Zelle bewegen können, ohne anzustoßen oder hängen zu bleiben, haben Wissenschaftler des Dresdner Max-Planck-Instituts für Molekulare Zellbiologie und Genetik (MPI-CBG) zusammen mit einem Kollegen von der University of Florida, USA, erforscht. Mit einer hochsensitiven Mikroskopiermethode konnten die Forscher beschreiben, wie das Motorprotein Kinesin-1 mit seinen "Transportschienen", den Mikrotubuli, im Nanometer-Maßstab zusammenwirkt: Das Motorprotein hält den Abstand zu den Mikrotubuli auf 17 Nanometer und kann dadurch seine Ladung ohne anzuecken ans Ziel bringen (PNAS, 24. Oktober 2006).


Künstlerische Darstellung des Transports von Mikrotubuli auf einer Fläche voller Kinesin-Motorproteine. In der Originalveröffentlichung konnte für genau diesen Vorgang der Abstand von 17 Nanometern zwischen Mikrotubuli und Oberfläche gemessen werden. Bild: Jacob Kerssemakers

In der Zelle geht es zu wie am Hamburger Hafen. Handelswaren kommen an, müssen zugeordnet, zwischengelagert und losgeschickt werden. Im Großen wie im Kleinen ist es von großer Bedeutung, Stau und Kollisionen zu vermeiden, denn diese Transportprozesse sind lebenswichtig für jeden Organismus.

Für den Transport in der Zelle sorgen Motorproteine, die wie kleine Containerwagen ihre Waren hin und her befördern. Sie benötigen Transportschienen, ohne die sie ziellos im Zytoplasma treiben würden. Diese Rolle übernehmen unter anderem die Mikrotubuli, lange fadenförmige Strukturen mit etwa 25 Nanometer Durchmesser und mehreren Mikrometern Länge, die sich durch die ganze Zelle ziehen. Die Motorproteine, für die Kinesin-1 ein bereits gut erforschtes Beispiel ist, bestehen aus Kopfgruppe, Mittelteil und Schwanz. Sie sind erheblich kleiner als ihre Transportschienen.

... mehr zu:
»Kinesin-1 »Motorprotein »Nanometer »Zelle

Transportiert Kinesin-1 einzelne Zellorganellen oder anderes Cargo, bewegt sich seine Kopfgruppe schrittweise auf einem Mikrotubulus vorwärts - die Schrittweite und die genaue Koordination solcher Schritte wurden bereits eingehend untersucht. Auch ist bekannt, wie Kinesin die Ladung an seinen Schwanz bindet. Doch wie stellen die kleinen Motorproteine sicher, dass sich beim Transport nichts verhakt? Entscheidend dafür ist: Auf wie viele Nanometer Abstand zu den Miktrotubuli hält Kinesin-1 die Ladung während des Transports? Liegt hierin die bislang ungeklärte Rolle des Teils zwischen Kopf und Schwanz?

Nur: Nanometer kann man nicht einfach mit dem Lineal messen. Für den am MPI-CBG in Dresden arbeitenden Wissenschaftler Jacob Kerssemakers aus der Nachwuchsgruppe von Stefan Diez sowie Jonathon Howard (MPI-CBG) und Henry Hess (University of Florida, USA) war es eine große technische und methodische Herausforderung, einen Vorgang in dieser kleinen Dimension zu analysieren.

Dieses Kunststück gelang ihnen mit einer hoch-sensitiven, indirekten Mikroskopiemethode, bei der die Forscher Moleküle, die sie vorher mit einem fluoreszierenden Farbstoff versehen hatten, über einen reflektierenden Silizium-Spiegel gleiten ließen. Nun leuchteten die Moleküle in Abhängigkeit ihres Abstandes zur Oberfläche durch Interferenzeffekte unterschiedlich stark (Fluorescence Interference Contrast: FLIC), der Abstand wird also indirekt durch die Leuchtkraft bestimmt.

Da sich die großen Mikrotubuli-Filamente mit dieser Methode besser als einzelne Kinesin-1 Moleküle erfassen lassen, bestückten die Forscher sie mit dem Farbstoff. "Das ganze System musste also auf den Kopf gestellt werden", so Kerssemakers. Die Forscher vermaßen also nicht direkt den Abstand des Motorproteins vom Mikrotubulus, sondern den Abstand, auf den Kinesin-1 die Transportschienen von der reflektierenden Oberfläche hält. Dafür überzogen sie die Spiegelfläche des FLIC-Mikroskops mit den Motorproteinen, die quasi einen "Kinesin-Rasen" bildeten. Die "Kinesin-Halme" hielten darauf aufgebrachte Mikrotubuli von sich weg - genau auf den Abstand, mit dem die Ladung sonst entlang der Schienen gleitet.

Nach exaktem Kalibrieren des Messsystems berechneten die Wissenschaftler schließlich den Abstand. Es sind 17 Nanometer, auf die Kinesin-1 die Mikrotubuli hält bzw. auf die es seine Ladung von den Mikrotubuli entfernt. Dieser Wert kommt nicht von ungefähr: Die meisten Teile, die in der Zelle zu Hindernissen werden, sind kleiner als dieser Zwischenraum. So scheinen es die raffinierten Motorproteine zu schaffen, Cargo ohne jegliche Widerstände oder Verhakungen zum Ziel zu bringen. Diese Erkenntnis bringt wahrlich Licht in

einen weiteren Abschnitt der dunklen Transportwege in der Zelle.

Originalveröffentlichung:

Jacob Kerssemakers, Jonathon Howard, Henry Hess und Stefan Diez
The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy

PNAS, S. 15812-15817, 24. October 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Kinesin-1 Motorprotein Nanometer Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics