Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immer schön auf Abstand bleiben

18.10.2006
Dresdner Max-Planck-Forscher haben herausgefunden, warum sich biologische Lasten beim Transport durch die Zelle nicht verhaken

Wie sich Transportproteine in der Zelle bewegen können, ohne anzustoßen oder hängen zu bleiben, haben Wissenschaftler des Dresdner Max-Planck-Instituts für Molekulare Zellbiologie und Genetik (MPI-CBG) zusammen mit einem Kollegen von der University of Florida, USA, erforscht. Mit einer hochsensitiven Mikroskopiermethode konnten die Forscher beschreiben, wie das Motorprotein Kinesin-1 mit seinen "Transportschienen", den Mikrotubuli, im Nanometer-Maßstab zusammenwirkt: Das Motorprotein hält den Abstand zu den Mikrotubuli auf 17 Nanometer und kann dadurch seine Ladung ohne anzuecken ans Ziel bringen (PNAS, 24. Oktober 2006).


Künstlerische Darstellung des Transports von Mikrotubuli auf einer Fläche voller Kinesin-Motorproteine. In der Originalveröffentlichung konnte für genau diesen Vorgang der Abstand von 17 Nanometern zwischen Mikrotubuli und Oberfläche gemessen werden. Bild: Jacob Kerssemakers

In der Zelle geht es zu wie am Hamburger Hafen. Handelswaren kommen an, müssen zugeordnet, zwischengelagert und losgeschickt werden. Im Großen wie im Kleinen ist es von großer Bedeutung, Stau und Kollisionen zu vermeiden, denn diese Transportprozesse sind lebenswichtig für jeden Organismus.

Für den Transport in der Zelle sorgen Motorproteine, die wie kleine Containerwagen ihre Waren hin und her befördern. Sie benötigen Transportschienen, ohne die sie ziellos im Zytoplasma treiben würden. Diese Rolle übernehmen unter anderem die Mikrotubuli, lange fadenförmige Strukturen mit etwa 25 Nanometer Durchmesser und mehreren Mikrometern Länge, die sich durch die ganze Zelle ziehen. Die Motorproteine, für die Kinesin-1 ein bereits gut erforschtes Beispiel ist, bestehen aus Kopfgruppe, Mittelteil und Schwanz. Sie sind erheblich kleiner als ihre Transportschienen.

... mehr zu:
»Kinesin-1 »Motorprotein »Nanometer »Zelle

Transportiert Kinesin-1 einzelne Zellorganellen oder anderes Cargo, bewegt sich seine Kopfgruppe schrittweise auf einem Mikrotubulus vorwärts - die Schrittweite und die genaue Koordination solcher Schritte wurden bereits eingehend untersucht. Auch ist bekannt, wie Kinesin die Ladung an seinen Schwanz bindet. Doch wie stellen die kleinen Motorproteine sicher, dass sich beim Transport nichts verhakt? Entscheidend dafür ist: Auf wie viele Nanometer Abstand zu den Miktrotubuli hält Kinesin-1 die Ladung während des Transports? Liegt hierin die bislang ungeklärte Rolle des Teils zwischen Kopf und Schwanz?

Nur: Nanometer kann man nicht einfach mit dem Lineal messen. Für den am MPI-CBG in Dresden arbeitenden Wissenschaftler Jacob Kerssemakers aus der Nachwuchsgruppe von Stefan Diez sowie Jonathon Howard (MPI-CBG) und Henry Hess (University of Florida, USA) war es eine große technische und methodische Herausforderung, einen Vorgang in dieser kleinen Dimension zu analysieren.

Dieses Kunststück gelang ihnen mit einer hoch-sensitiven, indirekten Mikroskopiemethode, bei der die Forscher Moleküle, die sie vorher mit einem fluoreszierenden Farbstoff versehen hatten, über einen reflektierenden Silizium-Spiegel gleiten ließen. Nun leuchteten die Moleküle in Abhängigkeit ihres Abstandes zur Oberfläche durch Interferenzeffekte unterschiedlich stark (Fluorescence Interference Contrast: FLIC), der Abstand wird also indirekt durch die Leuchtkraft bestimmt.

Da sich die großen Mikrotubuli-Filamente mit dieser Methode besser als einzelne Kinesin-1 Moleküle erfassen lassen, bestückten die Forscher sie mit dem Farbstoff. "Das ganze System musste also auf den Kopf gestellt werden", so Kerssemakers. Die Forscher vermaßen also nicht direkt den Abstand des Motorproteins vom Mikrotubulus, sondern den Abstand, auf den Kinesin-1 die Transportschienen von der reflektierenden Oberfläche hält. Dafür überzogen sie die Spiegelfläche des FLIC-Mikroskops mit den Motorproteinen, die quasi einen "Kinesin-Rasen" bildeten. Die "Kinesin-Halme" hielten darauf aufgebrachte Mikrotubuli von sich weg - genau auf den Abstand, mit dem die Ladung sonst entlang der Schienen gleitet.

Nach exaktem Kalibrieren des Messsystems berechneten die Wissenschaftler schließlich den Abstand. Es sind 17 Nanometer, auf die Kinesin-1 die Mikrotubuli hält bzw. auf die es seine Ladung von den Mikrotubuli entfernt. Dieser Wert kommt nicht von ungefähr: Die meisten Teile, die in der Zelle zu Hindernissen werden, sind kleiner als dieser Zwischenraum. So scheinen es die raffinierten Motorproteine zu schaffen, Cargo ohne jegliche Widerstände oder Verhakungen zum Ziel zu bringen. Diese Erkenntnis bringt wahrlich Licht in

einen weiteren Abschnitt der dunklen Transportwege in der Zelle.

Originalveröffentlichung:

Jacob Kerssemakers, Jonathon Howard, Henry Hess und Stefan Diez
The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy

PNAS, S. 15812-15817, 24. October 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Kinesin-1 Motorprotein Nanometer Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Maßstäbe für eine bessere Wasserqualität in Europa
27.02.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Neurobiologie - Vorausschauend teilen
27.02.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik