Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Details im Nanokosmos der Zelle

10.08.2006
Max-Planck-Forscher verbessern die Auflösung von Fluoreszenzmikroskopen deutlich

Wissenschaftler des Max-Planck-Instituts für Biophysikalische Chemie in Göttingen haben das Tor zum Nanokosmos der Zelle weiter aufgestoßen: Die Forscher haben die Auflösung von STED-Mikroskopen (Stimulated Emission Depletion) in Zellen erstmals auf bis zu 15 Nanometer verbessert. Erst im April hatten sie mit den Mikroskopen, deren Prinzip sie vor wenigen Jahren entwickelten, eine Detailschärfe von 60 Nanometern erreicht. Die Wissenschaftler können nun noch mehr Details als bislang aus dem Inneren einer Zelle abbilden, weil sie den effektiven Fokus des STED-Mikroskops weiter verkleinert haben. Das dafür erforderliche intensivere Licht, können sie aber nur verwenden, weil sie mit einem neuen Trick verhindern, dass die Fluoreszenzfarbstoffe dabei ausbleichen. (Proceedings of the National Academy of Sciences USA, 1. August, 2006)


Der Blick auf das Innere von Zellen wird immer schärfer: Die beiden Abbildungen zeigen Filamente in einer menschlichen Nervenzelle; links durch ein herkömmliches Konfokalmikroskop, rechts durch ein STED-Mikroskop. Die Auflösung des STED-Mikroskops ist zwölfmal besser. Bild: MPI für biophysikalische Chemie

Wie Viren eine Zelle befallen, wie Nervenzellen Signale weiterleiten oder wie Proteine arbeiten - der Nanokosmos der Natur bleibt dem menschlichen Auge verborgen. Um das scheinbar Unsichtbare dennoch zu beobachten, müssen wir die Objekte vergrößern - zum Beispiel unter einem Fluoreszenzmikroskop. Mit ihm beobachten die Wissenschaftler fluoreszierende Marker, die sie zuvor an Proteine und andere Biomoleküle geheftet hatten. Lange Zeit verhinderte jedoch eine zu geringe Auflösung tiefere Einblicke in die Funktion von Proteinen - einzelne Proteine waren mit ihren 2-20 Nanometer Durchmesser dafür bislang zu klein.

Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen haben nun mit ihrem STED-Mikroskop (Stimulated Emission Depletion) eine Auflösung von bis zu 15 Nanometer erzielt. Damit ist ihr Fluoreszenzmikroskop zwölfmal schärfer als ein konventionelles. Bereits im April hatten die Forscher um Professor Stefan Hell eine Detailschärfe von bis zu 60 Nanometer in der Zelle erreicht.

Noch vor wenigen Jahren gingen Physiker noch davon aus, dass sie keine Details unterscheiden können, die dichter als 200 nm beieinander liegen. Diese Grenze setzte jedenfalls das Abbe’sche Gesetz, wonach die Auflösung eines Lichtmikroskops nicht genauer sein kann, als die halbe Wellenlänge des eingestrahlten Lichts.

Hell und seine Mitarbeiter haben diese Grenze mit einem Trick überwunden. Sie regen die Fluoreszenzfarbstoffe, mit denen sie etwa Proteine markiert haben, zunächst mit einem blauen Lichtstrahl an. Den Spot dieses Strahls können sie jedoch nicht schärfer als 200 Nanometer machen - so wie es das Abbe’sche Gesetz vorschreibt. Doch noch ehe die angeregten Moleküle in dem Lichtfleck leuchten, regen sie die Moleküle im äußeren Bereich des Lichtflecks wieder ab. Zu diesem Zweck legen sie einen zweiten ringförmigen Lichtstrahl, den STED-Strahl, über den Anregungsspot. Nur in einem deutlich kleineren Fleck im Zentrum des Lichtrings bleiben die Moleküle angeregt und können anschließend leuchten.

Dabei gilt: je intensiver der STED-Strahl, desto kleiner lässt sich der Kreis ziehen, in dem die Moleküle noch fluoreszieren können. Und umso besser ist die Auflösung. Allerdings bleichen die fluoreszierenden Farbteilchen in einem intensiveren Lichtstrahl auch schneller aus und man sieht - nichts. Die Göttinger Wissenschaftler fanden nun heraus, dass die Fluoreszenzmoleküle meistens ausbleichen, weil sie immer wieder für rund eine Mikrosekunde in einen weiteren, dunklen Zustand - Physiker sprechen von einem Triplett-Zustand - geraten. Wird ein Molekül, das sich gerade in diesem Zustand befindet, von einem Lichtteilchen getroffen, so wird es unwiderruflich geblichen. Sie lösten das Problem, indem sie die Moleküle mit Lichtpulsen bestrahlten, die zwischen jedem Puls 4 Mikrosekunden Abstand lassen. Genug Zeit für die Moleküle, um aus dem dunklen Zustand zurückzukehren. Anschließend stehen die Moleküle wieder für die An- und Abregung zur Verfügung.

"Die STED-Technik ist noch lange nicht ausgereizt", sagt Professor Hell. Denkbar seien Auflösungen auf der Größe eines Farbstoffmoleküls - dies entspräche einer Schärfe von ein bis zwei Nanometern. Die Fluoreszenzmikroskope finden vor allem in der Biologie häufig Anwendung. Ihr Vorteil: sie können das Innere lebender Zellen sichtbar machen, ohne sie dabei zu beschädigen. Mit ihrer STED-Technik haben die Göttinger Wissenschaftler bereits gezeigt, wie sich das Protein Bruchpilot räumlich in Synapsen anordnet und damit die Ausbildung aktiver synapti-scher Zonen auslöst, an denen die Nervenzelle bevorzugt Neurotransmitter ausschüttet. Außerdem erforschten sie, auf welche Weise in Synapsen ausgeschüttete Proteine sich an der präsynaptischen Membran anordnen.

[SH/PH]

Originalveröffentlichung:

Donnert, G., J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell (2006)
"Macromolecular-scale resolution in biological fluorescence microscopy"
Proc. Natl. Acad. Soc. USA 130 (31): 11440-11445

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Fluoreszenzmikroskop Molekül Nanokosmos Nanometer Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften