Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenverbindungen im menschlichen Gehirn neu bestimmt

28.07.2006
Max-Planck-Forscher enthüllen Anordnung der Nervenfaserbahnen, die die beiden Hälften des menschlichen Gehirns miteinander verknüpfen

Die Nervenzellen der grauen Hirnsubstanz im menschlichen Gehirn sind auf Tausendfache Weise untereinander verschaltet. Zwischen weiter entfernt liegenden Zentren - beispielsweise in der Großhirnrinde - bilden sich dabei auch dickere Faserbahnen aus, die viele einzelne Nervenfortsätze in einem gemeinsamen Strang über größere Distanzen bündeln.


Faserbahnen durch den weißen Balken einer gesunden Versuchsperson: (links) Seitenansicht, (rechts) Ansicht von vorne rechts oben. Die Bahnen wurden mithilfe einer speziellen Technik der Magnetresonanz-Tomografie identifiziert. Sie verbinden funktionell gleichartige Areale der beiden Hirnhälften  grün: präfrontal, hellblau: prämotorisch, dunkelblau: motorisch, rot: sensorisch, orange: parietal, violett: temporal, gelb: okkzipital. Bild: MPI für biophysikalische Chemie


(Links) Anatomische Magnetresonanz-Tomografie: Magnetresonanz-Tomografie des menschlichen Gehirns (Mittelschicht) mit Kennzeichnung des weißen Balkens. (Rechts) Das neue und alte Schema für die Anordnung der kreuzenden Faserbahnen aus unterschiedlichen Hirnarealen  grün: präfrontal, hellblau: prämotorisch, dunkelblau: motorisch, rot: sensorisch, orange: parietal, violett: temporal, gelb: okkzipital. Bild: MPI für biophysikalische Chemie

Die Gesamtheit dieser Faserverbindungen ist als weiße Hirnsubstanz bekannt. Die auffälligste Struktur der weißen Hirnsubstanz ist der weiße Balken (Corpus Callosum) in der Mitte des Gehirns. Er verbindet die beiden Hirnhälften und wird von Nervenfasern gebildet, die in der Regel gleichartige Funktionszentren in der jeweils gegenüberliegenden Hirnhälfte miteinander verknüpfen. Wo allerdings diese Bahnen den weißen Balken kreuzen, war bisher nur grob bekannt.

Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen haben nun herausgefunden, dass die bisherigen Annahmen nicht der Wirklichkeit entsprechen. Die Forscher benutzten eine neue Technik der bildgebenden Magnetresonanz-Tomografie, die die Beweglichkeit der Wassermoleküle in den Zellen bestimmt und ihre Vorzugsrichtung mit der Richtung der zugrunde liegenden Nervenfaserbahn gleichsetzt. Bei gesunden Versuchspersonen ergaben sich zum Teil erhebliche Abweichungen von den bislang bekannten Daten - beispielsweise bezüglich der Bahnen aus den motorischen und sensorischen Hirnrinden. Die genaue Kenntnis der geordneten Reihung (Topographie) aller Bahnen im weißen Balken ist für viele Fragestellungen von erheblicher Bedeutung, insbesondere für die Untersuchung von Hirnerkrankungen (NeuroImage, epub, 18. Juli 2006).

Das menschliche Gehirn ist das komplexeste uns bekannte Objekt im Universum. Seine bis zu 100 Milliarden Nervenzellen sind mit vielen Tausend anderen Nervenzellen verschaltet. Ergänzend zu den lokalen Netzwerken gestatten die mit dicken Myelinscheiden ummantelten Fortsätze der Nervenzellen die Übertragung von Informationen über größere Entfernungen - zwischen den einzelnen Funktionseinheiten in der Großhirnrinde, zu tiefer liegenden Zentren im Mittelhirn und Kleinhirn oder gar durch das Rückenmark bis zu den peripheren Nerven, die die Muskeln innervieren. In der Regel werden die Nervenfortsätze einer Region als Faserbahn in einem Strang gebündelt, die Gesamtheit dieser Bahnen bezeichnet man als weiße Hirnsubstanz.

In der konventionellen, anatomischen Magnetresonanz-Tomografie (MRT) des Gehirns wird die weiße Hirnsubstanz einheitlich dargestellt. Faserverläufe können nicht aufgelöst und einzelnen Verbindungen nicht zugeordnet werden. Dies gilt auch für den weißen Balken. Er ist die größte Struktur der weißen Hirnsubstanz und sorgt in zentraler Lage des Gehirns für den Informationsaustausch zwischen den beiden Hirnhälften. Dabei wird der weiße Balken von Faserbahnen gebildet, die hauptsächlich gleichartige Funktionszentren in der jeweils gegenüberliegenden Großhirnrinde miteinander verknüpfen. Wo allerdings diese Bahnen den weißen Balken kreuzen, war bisher nur grob bekannt. In den Lehrbüchern findet sich ein Schema von Witelson, das allerdings im wesentlichen aus post-mortem Studien an den Gehirnen von nichtmenschlichen Primaten entwickelt wurde und nur geometrische Anhaltspunkte für Faserbahnen aus größeren Bereichen der Hirnrinde angegeben soll. Eine klare Funktionszuordnung ist mit diesem Schema nicht verbunden. Dieses Defizit konnte nun von den Wissenschaftlern des Max-Planck-Instituts für biophysikalische Chemie behoben und zugleich die genaue Anordnung der kreuzenden Bahnen aus allen Bereichen der Hirnrinde gesunder Versuchspersonen aufgeklärt werden.

Die Göttinger Forscher nutzten eine neue Technik der bildgebenden MRT, die die Beweglichkeit der Wassermoleküle im Hirngewebe sowie ihre Vorzugsrichtung aufzeichnet. Sie stützten sich dabei auf eine selbst entwickelte Messtechnik, die im Gegensatz zu der bisher fast ausschließlich genutzten Methode keinerlei Verzerrungen zwischen den anatomischen Bildern und den Karten der Wasserbeweglichkeit aufweist. Damit ergibt sich für jeden anatomischen Referenzpunkt des Gehirns eine bestimmte Richtung, die mit der Richtung des Faserbündels gleichgesetzt wird. Der Vorstellung liegt die begründete Annahme zugrunde, dass sich das Wasser sehr viel leichter entlang der Nervenfortsätze als senkrecht dazu bewegt. Mithilfe eines speziell dafür entwickelten Programms lassen sich anschließend, gewissermaßen von Punkt zu Punkt, die einzelnen Faserverläufe im Computer rekonstruieren.

Das neue Verfahren wurde jetzt erstmals eingesetzt, um eine umfassende Charakterisierung des weißen Balkens im intakten menschlichen Gehirn zu erzielen. Der in anatomischen Aufnahmen homogene weiße Balken wurde vollständig in Faserbahnen aufgelöst, die Verbindungen zu allen anatomisch gut identifizierbaren Arealen der Großhirnrinde herstellen (siehe Abb. 1). Dabei gingen die Forscher so vor, dass der Computer jeweils diejenigen Bahnen bestimmte, die sowohl den weißen Balken als auch ein ausgewähltes Gebiet in der Großhirnrinde kreuzen.

Auf diese Weise ist ein neues Bild von der geordneten Reihung (Topographie) aller Faserbahnen des weißen Balkens entstanden, das in die Lehrbücher eingehen wird (s. Abb. 2). Es ist anatomisch und teilweise auch funktionell begründet und weist gegenüber den bisherigen Vorstellungen zum Teil erhebliche Abweichungen auf. Zwar kreuzen auch jetzt noch Bahnen, die frontale Areale des Gehirns miteinander verbinden, im vorderen Bereich des weißen Balkens, während Bahnen der visuellen Areale im hinteren Teil des Gehirns auch im hinteren Bereich des Balkens verlaufen.

Doch insbesondere die Lage und Größe der Bahnen aus der motorischen und sensorischen Hirnrinde sind eindeutig anders (weiter hinten) zugeordnet als ursprünglich vermutet (vgl. Abb. 2). Ähnliches gilt für die Bahnen, die die jeweiligen rechten und linken Areale der prämotorischen und präfrontalen Hirnrinde verbinden. Das bisherige Schema beruht mehrheitlich auf Primatendaten. Es darf daher vermutet werden, dass die evolutionäre Entwicklung (Vergrößerung) der frontalen Hirnrinde vom Affen zum Menschen zum Teil für diese Unterschiede verantwortlich ist. Für den Menschen ist eine genaue Kenntnis der Topographie des weißen Balkens nicht nur im Hinblick auf grundlegende biologische Fragestellungen, sondern vor allem für klinische Untersuchungen neurodegenerativer Hirnerkrankungen von offensichtlicher Bedeutung.

Das Projekt wurde durch die Max-Planck-Gesellschaft und das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Göttinger Bernstein Centers for Computational Neuroscience unterstützt.

Originalveröffentlichung:

Sabine Hofer and Jens Frahm
Sabine Hofer and Jens Frahm Topography of the human corpus callosum revisited - Comprehensive fiber tractography using magnetic resonance diffusion tensor imaging

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Faserbahn Großhirnrinde Hirnrinde Hirnsubstanz Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie