Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenverbindungen im menschlichen Gehirn neu bestimmt

28.07.2006
Max-Planck-Forscher enthüllen Anordnung der Nervenfaserbahnen, die die beiden Hälften des menschlichen Gehirns miteinander verknüpfen

Die Nervenzellen der grauen Hirnsubstanz im menschlichen Gehirn sind auf Tausendfache Weise untereinander verschaltet. Zwischen weiter entfernt liegenden Zentren - beispielsweise in der Großhirnrinde - bilden sich dabei auch dickere Faserbahnen aus, die viele einzelne Nervenfortsätze in einem gemeinsamen Strang über größere Distanzen bündeln.


Faserbahnen durch den weißen Balken einer gesunden Versuchsperson: (links) Seitenansicht, (rechts) Ansicht von vorne rechts oben. Die Bahnen wurden mithilfe einer speziellen Technik der Magnetresonanz-Tomografie identifiziert. Sie verbinden funktionell gleichartige Areale der beiden Hirnhälften  grün: präfrontal, hellblau: prämotorisch, dunkelblau: motorisch, rot: sensorisch, orange: parietal, violett: temporal, gelb: okkzipital. Bild: MPI für biophysikalische Chemie


(Links) Anatomische Magnetresonanz-Tomografie: Magnetresonanz-Tomografie des menschlichen Gehirns (Mittelschicht) mit Kennzeichnung des weißen Balkens. (Rechts) Das neue und alte Schema für die Anordnung der kreuzenden Faserbahnen aus unterschiedlichen Hirnarealen  grün: präfrontal, hellblau: prämotorisch, dunkelblau: motorisch, rot: sensorisch, orange: parietal, violett: temporal, gelb: okkzipital. Bild: MPI für biophysikalische Chemie

Die Gesamtheit dieser Faserverbindungen ist als weiße Hirnsubstanz bekannt. Die auffälligste Struktur der weißen Hirnsubstanz ist der weiße Balken (Corpus Callosum) in der Mitte des Gehirns. Er verbindet die beiden Hirnhälften und wird von Nervenfasern gebildet, die in der Regel gleichartige Funktionszentren in der jeweils gegenüberliegenden Hirnhälfte miteinander verknüpfen. Wo allerdings diese Bahnen den weißen Balken kreuzen, war bisher nur grob bekannt.

Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen haben nun herausgefunden, dass die bisherigen Annahmen nicht der Wirklichkeit entsprechen. Die Forscher benutzten eine neue Technik der bildgebenden Magnetresonanz-Tomografie, die die Beweglichkeit der Wassermoleküle in den Zellen bestimmt und ihre Vorzugsrichtung mit der Richtung der zugrunde liegenden Nervenfaserbahn gleichsetzt. Bei gesunden Versuchspersonen ergaben sich zum Teil erhebliche Abweichungen von den bislang bekannten Daten - beispielsweise bezüglich der Bahnen aus den motorischen und sensorischen Hirnrinden. Die genaue Kenntnis der geordneten Reihung (Topographie) aller Bahnen im weißen Balken ist für viele Fragestellungen von erheblicher Bedeutung, insbesondere für die Untersuchung von Hirnerkrankungen (NeuroImage, epub, 18. Juli 2006).

Das menschliche Gehirn ist das komplexeste uns bekannte Objekt im Universum. Seine bis zu 100 Milliarden Nervenzellen sind mit vielen Tausend anderen Nervenzellen verschaltet. Ergänzend zu den lokalen Netzwerken gestatten die mit dicken Myelinscheiden ummantelten Fortsätze der Nervenzellen die Übertragung von Informationen über größere Entfernungen - zwischen den einzelnen Funktionseinheiten in der Großhirnrinde, zu tiefer liegenden Zentren im Mittelhirn und Kleinhirn oder gar durch das Rückenmark bis zu den peripheren Nerven, die die Muskeln innervieren. In der Regel werden die Nervenfortsätze einer Region als Faserbahn in einem Strang gebündelt, die Gesamtheit dieser Bahnen bezeichnet man als weiße Hirnsubstanz.

In der konventionellen, anatomischen Magnetresonanz-Tomografie (MRT) des Gehirns wird die weiße Hirnsubstanz einheitlich dargestellt. Faserverläufe können nicht aufgelöst und einzelnen Verbindungen nicht zugeordnet werden. Dies gilt auch für den weißen Balken. Er ist die größte Struktur der weißen Hirnsubstanz und sorgt in zentraler Lage des Gehirns für den Informationsaustausch zwischen den beiden Hirnhälften. Dabei wird der weiße Balken von Faserbahnen gebildet, die hauptsächlich gleichartige Funktionszentren in der jeweils gegenüberliegenden Großhirnrinde miteinander verknüpfen. Wo allerdings diese Bahnen den weißen Balken kreuzen, war bisher nur grob bekannt. In den Lehrbüchern findet sich ein Schema von Witelson, das allerdings im wesentlichen aus post-mortem Studien an den Gehirnen von nichtmenschlichen Primaten entwickelt wurde und nur geometrische Anhaltspunkte für Faserbahnen aus größeren Bereichen der Hirnrinde angegeben soll. Eine klare Funktionszuordnung ist mit diesem Schema nicht verbunden. Dieses Defizit konnte nun von den Wissenschaftlern des Max-Planck-Instituts für biophysikalische Chemie behoben und zugleich die genaue Anordnung der kreuzenden Bahnen aus allen Bereichen der Hirnrinde gesunder Versuchspersonen aufgeklärt werden.

Die Göttinger Forscher nutzten eine neue Technik der bildgebenden MRT, die die Beweglichkeit der Wassermoleküle im Hirngewebe sowie ihre Vorzugsrichtung aufzeichnet. Sie stützten sich dabei auf eine selbst entwickelte Messtechnik, die im Gegensatz zu der bisher fast ausschließlich genutzten Methode keinerlei Verzerrungen zwischen den anatomischen Bildern und den Karten der Wasserbeweglichkeit aufweist. Damit ergibt sich für jeden anatomischen Referenzpunkt des Gehirns eine bestimmte Richtung, die mit der Richtung des Faserbündels gleichgesetzt wird. Der Vorstellung liegt die begründete Annahme zugrunde, dass sich das Wasser sehr viel leichter entlang der Nervenfortsätze als senkrecht dazu bewegt. Mithilfe eines speziell dafür entwickelten Programms lassen sich anschließend, gewissermaßen von Punkt zu Punkt, die einzelnen Faserverläufe im Computer rekonstruieren.

Das neue Verfahren wurde jetzt erstmals eingesetzt, um eine umfassende Charakterisierung des weißen Balkens im intakten menschlichen Gehirn zu erzielen. Der in anatomischen Aufnahmen homogene weiße Balken wurde vollständig in Faserbahnen aufgelöst, die Verbindungen zu allen anatomisch gut identifizierbaren Arealen der Großhirnrinde herstellen (siehe Abb. 1). Dabei gingen die Forscher so vor, dass der Computer jeweils diejenigen Bahnen bestimmte, die sowohl den weißen Balken als auch ein ausgewähltes Gebiet in der Großhirnrinde kreuzen.

Auf diese Weise ist ein neues Bild von der geordneten Reihung (Topographie) aller Faserbahnen des weißen Balkens entstanden, das in die Lehrbücher eingehen wird (s. Abb. 2). Es ist anatomisch und teilweise auch funktionell begründet und weist gegenüber den bisherigen Vorstellungen zum Teil erhebliche Abweichungen auf. Zwar kreuzen auch jetzt noch Bahnen, die frontale Areale des Gehirns miteinander verbinden, im vorderen Bereich des weißen Balkens, während Bahnen der visuellen Areale im hinteren Teil des Gehirns auch im hinteren Bereich des Balkens verlaufen.

Doch insbesondere die Lage und Größe der Bahnen aus der motorischen und sensorischen Hirnrinde sind eindeutig anders (weiter hinten) zugeordnet als ursprünglich vermutet (vgl. Abb. 2). Ähnliches gilt für die Bahnen, die die jeweiligen rechten und linken Areale der prämotorischen und präfrontalen Hirnrinde verbinden. Das bisherige Schema beruht mehrheitlich auf Primatendaten. Es darf daher vermutet werden, dass die evolutionäre Entwicklung (Vergrößerung) der frontalen Hirnrinde vom Affen zum Menschen zum Teil für diese Unterschiede verantwortlich ist. Für den Menschen ist eine genaue Kenntnis der Topographie des weißen Balkens nicht nur im Hinblick auf grundlegende biologische Fragestellungen, sondern vor allem für klinische Untersuchungen neurodegenerativer Hirnerkrankungen von offensichtlicher Bedeutung.

Das Projekt wurde durch die Max-Planck-Gesellschaft und das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Göttinger Bernstein Centers for Computational Neuroscience unterstützt.

Originalveröffentlichung:

Sabine Hofer and Jens Frahm
Sabine Hofer and Jens Frahm Topography of the human corpus callosum revisited - Comprehensive fiber tractography using magnetic resonance diffusion tensor imaging

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Faserbahn Großhirnrinde Hirnrinde Hirnsubstanz Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie