Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenverbindungen im menschlichen Gehirn neu bestimmt

28.07.2006
Max-Planck-Forscher enthüllen Anordnung der Nervenfaserbahnen, die die beiden Hälften des menschlichen Gehirns miteinander verknüpfen

Die Nervenzellen der grauen Hirnsubstanz im menschlichen Gehirn sind auf Tausendfache Weise untereinander verschaltet. Zwischen weiter entfernt liegenden Zentren - beispielsweise in der Großhirnrinde - bilden sich dabei auch dickere Faserbahnen aus, die viele einzelne Nervenfortsätze in einem gemeinsamen Strang über größere Distanzen bündeln.


Faserbahnen durch den weißen Balken einer gesunden Versuchsperson: (links) Seitenansicht, (rechts) Ansicht von vorne rechts oben. Die Bahnen wurden mithilfe einer speziellen Technik der Magnetresonanz-Tomografie identifiziert. Sie verbinden funktionell gleichartige Areale der beiden Hirnhälften  grün: präfrontal, hellblau: prämotorisch, dunkelblau: motorisch, rot: sensorisch, orange: parietal, violett: temporal, gelb: okkzipital. Bild: MPI für biophysikalische Chemie


(Links) Anatomische Magnetresonanz-Tomografie: Magnetresonanz-Tomografie des menschlichen Gehirns (Mittelschicht) mit Kennzeichnung des weißen Balkens. (Rechts) Das neue und alte Schema für die Anordnung der kreuzenden Faserbahnen aus unterschiedlichen Hirnarealen  grün: präfrontal, hellblau: prämotorisch, dunkelblau: motorisch, rot: sensorisch, orange: parietal, violett: temporal, gelb: okkzipital. Bild: MPI für biophysikalische Chemie

Die Gesamtheit dieser Faserverbindungen ist als weiße Hirnsubstanz bekannt. Die auffälligste Struktur der weißen Hirnsubstanz ist der weiße Balken (Corpus Callosum) in der Mitte des Gehirns. Er verbindet die beiden Hirnhälften und wird von Nervenfasern gebildet, die in der Regel gleichartige Funktionszentren in der jeweils gegenüberliegenden Hirnhälfte miteinander verknüpfen. Wo allerdings diese Bahnen den weißen Balken kreuzen, war bisher nur grob bekannt.

Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen haben nun herausgefunden, dass die bisherigen Annahmen nicht der Wirklichkeit entsprechen. Die Forscher benutzten eine neue Technik der bildgebenden Magnetresonanz-Tomografie, die die Beweglichkeit der Wassermoleküle in den Zellen bestimmt und ihre Vorzugsrichtung mit der Richtung der zugrunde liegenden Nervenfaserbahn gleichsetzt. Bei gesunden Versuchspersonen ergaben sich zum Teil erhebliche Abweichungen von den bislang bekannten Daten - beispielsweise bezüglich der Bahnen aus den motorischen und sensorischen Hirnrinden. Die genaue Kenntnis der geordneten Reihung (Topographie) aller Bahnen im weißen Balken ist für viele Fragestellungen von erheblicher Bedeutung, insbesondere für die Untersuchung von Hirnerkrankungen (NeuroImage, epub, 18. Juli 2006).

Das menschliche Gehirn ist das komplexeste uns bekannte Objekt im Universum. Seine bis zu 100 Milliarden Nervenzellen sind mit vielen Tausend anderen Nervenzellen verschaltet. Ergänzend zu den lokalen Netzwerken gestatten die mit dicken Myelinscheiden ummantelten Fortsätze der Nervenzellen die Übertragung von Informationen über größere Entfernungen - zwischen den einzelnen Funktionseinheiten in der Großhirnrinde, zu tiefer liegenden Zentren im Mittelhirn und Kleinhirn oder gar durch das Rückenmark bis zu den peripheren Nerven, die die Muskeln innervieren. In der Regel werden die Nervenfortsätze einer Region als Faserbahn in einem Strang gebündelt, die Gesamtheit dieser Bahnen bezeichnet man als weiße Hirnsubstanz.

In der konventionellen, anatomischen Magnetresonanz-Tomografie (MRT) des Gehirns wird die weiße Hirnsubstanz einheitlich dargestellt. Faserverläufe können nicht aufgelöst und einzelnen Verbindungen nicht zugeordnet werden. Dies gilt auch für den weißen Balken. Er ist die größte Struktur der weißen Hirnsubstanz und sorgt in zentraler Lage des Gehirns für den Informationsaustausch zwischen den beiden Hirnhälften. Dabei wird der weiße Balken von Faserbahnen gebildet, die hauptsächlich gleichartige Funktionszentren in der jeweils gegenüberliegenden Großhirnrinde miteinander verknüpfen. Wo allerdings diese Bahnen den weißen Balken kreuzen, war bisher nur grob bekannt. In den Lehrbüchern findet sich ein Schema von Witelson, das allerdings im wesentlichen aus post-mortem Studien an den Gehirnen von nichtmenschlichen Primaten entwickelt wurde und nur geometrische Anhaltspunkte für Faserbahnen aus größeren Bereichen der Hirnrinde angegeben soll. Eine klare Funktionszuordnung ist mit diesem Schema nicht verbunden. Dieses Defizit konnte nun von den Wissenschaftlern des Max-Planck-Instituts für biophysikalische Chemie behoben und zugleich die genaue Anordnung der kreuzenden Bahnen aus allen Bereichen der Hirnrinde gesunder Versuchspersonen aufgeklärt werden.

Die Göttinger Forscher nutzten eine neue Technik der bildgebenden MRT, die die Beweglichkeit der Wassermoleküle im Hirngewebe sowie ihre Vorzugsrichtung aufzeichnet. Sie stützten sich dabei auf eine selbst entwickelte Messtechnik, die im Gegensatz zu der bisher fast ausschließlich genutzten Methode keinerlei Verzerrungen zwischen den anatomischen Bildern und den Karten der Wasserbeweglichkeit aufweist. Damit ergibt sich für jeden anatomischen Referenzpunkt des Gehirns eine bestimmte Richtung, die mit der Richtung des Faserbündels gleichgesetzt wird. Der Vorstellung liegt die begründete Annahme zugrunde, dass sich das Wasser sehr viel leichter entlang der Nervenfortsätze als senkrecht dazu bewegt. Mithilfe eines speziell dafür entwickelten Programms lassen sich anschließend, gewissermaßen von Punkt zu Punkt, die einzelnen Faserverläufe im Computer rekonstruieren.

Das neue Verfahren wurde jetzt erstmals eingesetzt, um eine umfassende Charakterisierung des weißen Balkens im intakten menschlichen Gehirn zu erzielen. Der in anatomischen Aufnahmen homogene weiße Balken wurde vollständig in Faserbahnen aufgelöst, die Verbindungen zu allen anatomisch gut identifizierbaren Arealen der Großhirnrinde herstellen (siehe Abb. 1). Dabei gingen die Forscher so vor, dass der Computer jeweils diejenigen Bahnen bestimmte, die sowohl den weißen Balken als auch ein ausgewähltes Gebiet in der Großhirnrinde kreuzen.

Auf diese Weise ist ein neues Bild von der geordneten Reihung (Topographie) aller Faserbahnen des weißen Balkens entstanden, das in die Lehrbücher eingehen wird (s. Abb. 2). Es ist anatomisch und teilweise auch funktionell begründet und weist gegenüber den bisherigen Vorstellungen zum Teil erhebliche Abweichungen auf. Zwar kreuzen auch jetzt noch Bahnen, die frontale Areale des Gehirns miteinander verbinden, im vorderen Bereich des weißen Balkens, während Bahnen der visuellen Areale im hinteren Teil des Gehirns auch im hinteren Bereich des Balkens verlaufen.

Doch insbesondere die Lage und Größe der Bahnen aus der motorischen und sensorischen Hirnrinde sind eindeutig anders (weiter hinten) zugeordnet als ursprünglich vermutet (vgl. Abb. 2). Ähnliches gilt für die Bahnen, die die jeweiligen rechten und linken Areale der prämotorischen und präfrontalen Hirnrinde verbinden. Das bisherige Schema beruht mehrheitlich auf Primatendaten. Es darf daher vermutet werden, dass die evolutionäre Entwicklung (Vergrößerung) der frontalen Hirnrinde vom Affen zum Menschen zum Teil für diese Unterschiede verantwortlich ist. Für den Menschen ist eine genaue Kenntnis der Topographie des weißen Balkens nicht nur im Hinblick auf grundlegende biologische Fragestellungen, sondern vor allem für klinische Untersuchungen neurodegenerativer Hirnerkrankungen von offensichtlicher Bedeutung.

Das Projekt wurde durch die Max-Planck-Gesellschaft und das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Göttinger Bernstein Centers for Computational Neuroscience unterstützt.

Originalveröffentlichung:

Sabine Hofer and Jens Frahm
Sabine Hofer and Jens Frahm Topography of the human corpus callosum revisited - Comprehensive fiber tractography using magnetic resonance diffusion tensor imaging

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Faserbahn Großhirnrinde Hirnrinde Hirnsubstanz Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

23.01.2017 | Biowissenschaften Chemie

Einem neuen, effektiven Fertigungsverfahren auf der Spur

23.01.2017 | Förderungen Preise

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung