Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Möglichen Gefahren der Nanopartikel auf der Spur - Empa-ForscherInnen entwickeln Zellkultur-Testverfahren

09.05.2006
Die Welt wird besser dank Nanotechnologie. Das verspricht zumindest das Marketing der Nanotechbranche. Hingegen sind mögliche Risiken der winzigen Teilchen für Mensch und Umwelt erst wenig erforscht. Dem wollen Empa-ForscherInnen abhelfen; innerhalb des Projekts "NanoRisk" hat ein Empa-Team Zelltests entwickelt, welche die Toxizität - die "Giftigkeit" - schnell und einfach abschätzen sollen. Erste Ergebnisse zeigen: Nanopartikel ist nicht gleich Nanopartikel.

MaterialwissenschaftlerInnen bieten sich seit dem Anbruch des "Nano-Zeitalters" ungeahnte Möglichkeiten. Denn Nanopartikel - also Teilchen mit einem Durchmesser von einigen Nanometern, oft nur wenige Moleküle gross - weisen andere physikalisch-chemischen Eigenschaften auf als grössere Partikel des gleichen Materials. Damit lassen sich erstmals neuartige Werkstoffe mit massgeschneiderten Eigenschaften herstellen. Schmutz abweisende Hemden, Pfannen, die nichts mehr anbrennen lassen, kratzfeste Beschichtungen, bessere Computer-Harddisks oder effektiverer Sonnenschutz - die Nano-Produktepalette ist in der Tat beeindruckend. Doch wie reagiert der menschliche Organismus auf die winzigen Teilchen? Welche Auswirkungen haben Nanopartikel etwa auf Zellen und Gewebe? Da die Nanoteilchen ungefähr die gleiche Grösse haben wie die Eiweissmoleküle einer Zelle, sollten sie von dieser leicht aufgenommen werden können. Doch was geschieht dann mit der Zelle? Viele Fragen, wenige Antworten.


Menschliche Lungenzellen, die drei Tage lang Eisenoxid-Nanopartikeln (Fe2O3) ausgesetzt waren. Die Zellen fangen bereits an sich abzurunden und von der Unterlage zu lösen. Ein erstes Anzeichen dafür, dass Eisenoxidpartikel zytotoxisch sind. Foto: Peter Wick, Empa.

Höchste Zeit also, sich der "Nanotoxikologie" zu widmen, dachten sich Peter Wick, Arie Bruinink und ihre KollegInnen an der Empa. "Wenn man diese neuartigen Materialien schon in grossem Massstab einsetzen will, ist es notwendig abzuklären, ob die neuen physikalisch-chemischen Eigenschaften nicht unerwartete Auswirkungen auf den menschlichen Organismus mit sich bringen", sagt der Zellbiologe Wick.

Zellkulturen als Versuchskaninchen für Toxizitätstests

Ziel der Empa-ForscherInnen war es, ein schnelles und einfaches Testsystem zu entwickeln, um eine erste Abschätzung der Toxizität von Nanopartikeln zu erhalten ohne auf Tierversuche zurückzugreifen. Ein idealer Kandidat hierfür sind Zellkulturen, wie sie auch bei Toxizitätstests von Chemikalien zum Einsatz kommen. "Wir mussten allerdings schnell feststellen, dass dies bei Nanopartikeln nicht so einfach ist", so Wick. Das Problem: Die kleinen Teilchen verkleben sehr schnell. "Als wir die Nanopartikel in die Nährlösung zu den Zellen gaben, erhielten wir anfangs nur Klumpen, die etwa so gross waren wie eine ganze Zelle", erinnert sich Wick. "Gott sei Dank haben wir gute Materialwissenschaftler an der Empa." Die halfen den Biologen mit einigen Tricks, das Nanopulver in der Zellnährlösung zu suspendieren und anschliessend zu untersuchen, etwa unter dem Elektronenmikroskop. So wissen die Empa-ForscherInnen stets genau, in welcher Form und in welcher Grösse die Nanopartikel vorliegen. Inzwischen ist es ihnen auch gelungen, die Nanoteilchen nach Grösse und Form voneinander zu trennen. "Viele der bisherigen Studien, die sich mit der Toxizität von Nanopartikeln befassen, wurden von Biologen durchgeführt, die sich nicht darüber im Klaren sind - wie wir anfangs eben auch -, in welcher Form die Teilchen schlussendlich mit den Zellen interagieren. Das ist dann gute Biologie, aber lausige Materialwissenschaft", sagt Wick. Gebe man einfach Nano-Rohmaterial auf die Zellen, könne man nie sicher sein, welche Art von Teilchen für den beobachteten Effekt verantwortlich waren.

Nicht alle Nanopartikel sind gleich schädlich für die Zellen

Nach ihren materialwissenschaftlichen "Hausaufgaben" haben Wick und seine KollegInnen nun sieben industriell wichtige Nanopartikel auf ihre zelltoxische Wirkung untersucht - von dem als harmlos geltenden Siliziumoxid, das schon seit langem als Nahrungsmittelzusatz verwendet wird, etwa in Ketchup, über Titan- und Zinkoxid, das in Kosmetika zum Einsatz kommt, bis hin zu Cer- und Zirkonoxid aus der Elektronikindustrie. Zum Vergleich testeten die Empa-ForscherInnen Asbestfasern, deren toxische Wirkung auf Zellen bestens bekannt und untersucht ist. (Asbestfasern, die eine durchschnittliche Länge von rund zehn Mikrometern und einen Durchmesser von etwa einem Mikrometer aufweisen, zählen allerdings nicht zu den Nanopartikeln.) Als Versuchskaninchen benutzten die ForscherInnen Zellinien zweier Zelltypen: menschliche Lungenzellen und Mausfibroblasten, welche häufig bei Toxizitätstest verwendet werden. Der Stoffwechsel der Zellen, deren Teilungsrate sowie ihr Erscheinungsbild unter dem Mikroskop diente den ForscherInnen als Gradmesser für den Gesundheitszustand der Zellen. Fazit der Studie, die demnächst im Fachblatt "Environmental Science & Technology" erscheint: "Nicht alle Nanopartikel sind gleich toxisch".

Zwischen Asbest und Siliziumoxid konnte das Empa-Team eine Art "Toxizitätsrangliste" aufstellen: Während Eisen- und Zinkoxidpartikel den menschlichen Lungenzellen erheblich zusetzen, erwies sich Trikalziumphosphat (das bei medizinischen Implantaten zum Einsatz kommt) als ähnlich verträglich wie Siliziumoxid. Titanoxid, Ceroxid und Zirkonoxid haben den Zellstoffwechsel zwar kurzfristig beeinträchtigt, waren aber deutlich weniger toxisch als Asbest. Insgesamt reagierten die menschlichen Lungenzellen deutlich empfindlicher auf die Nanopartikel als Mausfibroblasten. "Die Lungenzellen eignen sich daher sehr gut für derartige Toxizitätsuntersuchungen", sagt Wick. "Unser Ziel ist es, ein Zellsystem zu entwickeln, das den Tierversuchen möglichst nahe kommt." Daher untersuchen die Empa-ForscherInnen derzeit eine ganze Reihe unterschiedlicher Zelllinien, unter anderem drei unterschiedliche Lungenzelltypen sowie frisch isolierten Hühnerembryo-Nervenzellen.

Für Kohlenstoffnanoröhrchen gilt: Je mehr sie miteinander verkleben, desto toxischer

In einer noch unveröffentlichten Studie haben Wick und seine KollegInnen Kohlenstoffnanoröhrchen - im wahrsten Sinn - unter die Lupe genommen. Im Gegensatz zu Nanopartikeln waren die Nanoröhrchen gerade dann besonders schädlich für die Zellen, wenn sie zu grösseren Nadeln zusammengeklebt waren. "Diese Agglomerate gleichen Asbestfasern - sowohl im Aussehen wie auch in ihrer Toxizität", sagt Wick. "Die scheinen also nicht ganz unbedenklich zu sein."

Als nächstes will der Biologe verstehen, was genau in einer Zelle abläuft, wenn sie Nanopartikeln ausgesetzt ist. Dazu analysiert er die Aktivität von Tausenden von Genen mit Hilfe so genannter DNA-Chips. "So können wir sehen, was die Partikel in der Zelle auslösen, welche genetischen Programme an- oder abgeschaltet werde", so Wick.

"NanoRisk" untersucht auch die Auswirkungen der Nanotechnologie auf die Gesellschaft

Die Ergebnisse aus Wicks Studien werden - zusammen mit anderen Daten etwa aus Tierversuchen oder Untersuchungen über die Verteilung der Nanopartikel in der Umwelt - von ForscherInnen um Lorenz Hilty dazu benutzt, eine Risikoabschätzung für Nanopartikel und -röhrchen vorzunehmen. Dazu analysieren sie sämtliche Studien zum Thema Nanotoxikologie und befragen ExpertInnen, um die Stärken und Schwächen der Studien zu evaluieren. Vorläufiges Zwischenresultat: Es gibt erst wenige aussagekräftige Studien auf diesem Gebiet, die sich zum Teil erst noch widersprechen. Das könnte unter anderem daran liegen, dass die verwendeten Nanopartikel oft nicht genau analysiert werden; die ForscherInnen wissen also oft nicht, in welcher Form bzw. Grösse die Teilchen vorliegen.

In einer zweiten Phase werden die Empa-ForscherInnen dann konkrete Anwendungsbeispiele von Kohlenstoffnanoröhrchen genauer untersuchen, und zwar von deren Herstellung über die Fertigung der Nanopartikel enthaltenden Produkte bis zu deren Entsorgung. Ziel dieser Lebenszyklusanalyse ist es, genaue Angaben darüber zu erhalten, wann Nanopartikel in welchen Mengen freigesetzt werden, um daraus mögliche Vorsorgestrategien ableiten zu können.

Weitere Informationen
Dr. Peter Wick, Abt. Materials Biology Interactions, peter.wick@empa.ch, Tel. +41 71 274 76 84
Prof. Dr. Lorenz Hilty, Abt. Technologie und Gesellschaft, lorenz.hilty@empa.ch, Tel. +41 71 274 73 45

Dr. Michael Hagmann, Abt. Kommunikation, michael.hagmann@empa.ch, Tel. +41 44 823 45 92

Martina Peter | idw
Weitere Informationen:
http://www.empa.ch/
http://www.empa.ch/plugin/template/empa/*/32939/---/l=2

Weitere Berichte zu: Empa-ForscherInnen Lungenzellen Nanopartikel Teilchen Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen