Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachstumsfaktoren mit Doppelfunktion

06.04.2006
Max-Planck-Wissenschaftler haben entdeckt, dass bestimmte Signalfaktoren bei Nervenzellen gleich zwei Aufgaben erfüllen: Wachstum und Orientierung

Gehen und Sprechen sind für uns meist selbstverständlich. Doch was wir unbewusst erledigen, verlangt von unserem Körper eine große motorische Leistung: Wie die Musiker in einem Orchester spielen dabei viele Muskeln zusammen. Nerven steuern die zahlreichen Muskelgruppen, die daran beteiligt sind. Doch woher weiß eine Nervenzelle, für welchen Muskel sie zuständig ist? Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried haben mit französischen und amerikanischen Kollegen die Entwicklung von Nervenbahnen bei Mäusen untersucht. Sie fanden heraus, dass spezielle Signalstoffe die Nervenzellen nicht nur wachsen lassen, sondern sie auch geschickt zu den richtigen Muskelfasern leiten (Neuron, 6. April 2006).


Steuerung des Wachstums von Nervenzellen. Im Vordergrund des Bildes teilt sich der von links kommende Hinterbeinnerv. Der obere Teil, der den Beugermuskel innerviert, enthält große Mengen des Ret-Rezeptors (rot gefärbt). Der untere Teil, der den Streckermuskel steuert, bildet dagegen wenig Ret-Rezeptor (gelb gefärbt). Der Nervenast mit der hohen Ret-Konzentration wird zu dem Bereich mit viel Signalfaktor GDNF (hell blau gefärbt) abgelenkt und wächst durch diesen Bereich hindurch. Im Hintergrund ist ein Mausembryo abgebildet, bei dem alle Nervenbahnen angefärbt sind (grau) - mit den Nerven der beiden Hinterbeine rechts und links von der Bildmitte. Bild: Max-Planck-Institut für Neurobiologie


Hinterbein-Nerv eines Mausembryos. Der Nerv verläuft von links oben nach rechts unten (braun); der Nervenast zum Beugermuskel wird durch den Bereich mit hoher GDNF-Konzentration (intensiv blau) nach rechts oben abgelenkt, während der Nervenast zum Streckermuskel weiter nach rechts unten wächst. Vom Streckermuskelnerv zweigen links unten noch vereinzelte Nervenfasern zu einem anderen Bereich mit GDNF ab (leicht blau gefärbt). Der Messbalken entspricht 250 Mikrometer. Bild: MPI für Neurobiologie

Damit sich ein Lebewesen koordiniert bewegen kann, muss der richtige Nerv zum richtigen Muskel finden. Dabei darf er trotz der vielen Richtungswechsel die Orientierung nicht verlieren. Wie das Nervensystem dieses Problem löst, erforschen Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried. Sie untersuchen, mit welchen Mechanismen die Nerven bei der Entwicklung eines Organismus ihr Ziel finden.

Im Nervensystem bilden Nervenzellen lange faserartige Ausläufer, die Axone. Um den Zielmuskel, der weit entfernt liegen kann, zu erreichen, braucht es spezielle Lenkungsfaktoren. Diese Faktoren regen die Axone zum Wachstum in eine bestimmte Richtung an. Sie werden entweder von Zellen des umliegenden Gewebes ausgeschüttet oder auf der Oberfläche der Gewebezellen präsentiert. Die Axone der Nervenzellen haben Empfangsantennen, so genannte Rezeptoren, die solche Faktoren erkennen. Wenn der richtige Faktor an den richtigen Rezeptor bindet, kann sich die Nervenzelle zum passenden Muskel hinstrecken und mit ihm eine dauerhafte Bindung eingehen. Dabei können die Signalfaktoren anziehend oder abstoßend wirken. Auf diese Weise zeigen sie den Nervenzellen, wo es lang geht.

In ihren Experimenten befassten sich Rüdiger Klein und seine Kollegen in der Abteilung Molekulare Neurobiologie des Max-Planck-Instituts für Biochemie und von den Universitäten Michigan (USA) und Marseille (Frankreich) mit dem Signalfaktor GDNF (engl. glial cell line-derived neurotrophic factor) und dessen Rezeptor Ret. Über dieses Signalpaar war bisher nur bekannt, dass es Motoneurone am Leben erhält und das Auswachsen ihrer Axone bewirkt. Nun konnten die Wissenschaftler zum ersten Mal nachweisen, dass das GDNF/Ret-System in der Nervenzelle eine Doppelfunktion hat: Es kann auch Nervenzellen bei der Entwicklung von Organismen zum richtigen Muskelgewebe leiten.

Die Neurobiologen beobachteten dazu die Entwicklung einer motorischen Nervenbahn, die im Hinterbein der Maus den Strecker- und Beugermuskel steuert: Durch Färbemethoden konnten sie nachweisen, dass der Teil der Nervenbahn, der den Beugermuskel versorgt, verstärkt den Rezeptor Ret bildet. Diese Axone wanderten in die Bereiche des Beines, in denen die Forscher besonders viel von dem Faktor GDNF fanden. Schalteten die Wissenschaftler das GDNF/Ret-System genetisch aus, so wanderten die Motoneurone in die falsche Richtung und endeten am Streckermuskel statt am Beugermuskel. Da die Muskeln nun falsch verschaltet waren, konnte sich die Maus nicht richtig bewegen. Das war ein eindeutiger Hinweis darauf, dass das GDNF/Ret-Signalsystem bestimmt, welche Muskeln die Motoneurone ansteuern.

Dabei kooperiert GDNF/Ret mit dem Ephrin/Eph-System. In früheren Versuchen war es den Max-Planck-Forschern bereits gelungen, die Rolle der Ephrine und ihrer Rezeptoren bei der Entwicklung von Nervensystem sowie Blut- und Lymphgefäßen zu entschlüsseln [1]. Damals hatten sie festgestellt, dass dieses Signalpaar den Nerven hilft, Muskeln zu steuern. Ephrin/Eph und GDNF/Ret funktionieren jedoch unabhängig voneinander. Das heißt, die Signalfaktoren eines Systems werden auch gebildet, wenn das andere blockiert ist. Doch die Faktoren eines Systems können alleine nicht dafür sorgen, dass sich die Nervenzellen richtig orientieren.

Damit haben Klein und seine Kollegen gezeigt, dass das GDNF/Ret-Signalpaar für die Ausrichtung der Nervenzellen wichtig sein muss - eine Eigenschaft, die von einem Nervenwachstumsfaktor bisher nicht bekannt war. Dies ist ein weiteres Beispiel dafür, dass die Natur ein bewährtes System mehrfach einsetzt. Denn GDNF dient den Nervenzellen nicht nur als Überlebens- und Wachstumsfaktor, sondern gibt ihnen auch das Ziel vor. Warum die Natur jedoch gleich zwei Signalwege mit gleicher Funktion entwickelt hat, darüber kann Rüdiger Klein, der die Studie leitete, nur spekulieren: "Wir sind erst ganz am Anfang, die einzelnen feinen Mechanismen zu verstehen, die dafür sorgen, dass unser Bewegungsapparat so perfekt mit Nervenzellen verbunden und gesteuert wird. Da das menschliche Nervensystem auf den gleichen Signalsystemen basiert, könnte diese Studie auch helfen, seine Entwicklung besser zu verstehen."

Originalveröffentlichung:
Edgar R. Kramer, Laura Knott, Fengyun Su, Eric Dessaud, Catherine E. Krull, Francoise Helmbacher, Rüdiger Klein

Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor axon pathway selection in the limb. Neuron 50 (1): 35-47 (6 April 2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Axone Muskel Nerv Nervensystem Nervenzelle Neurobiologie Rezeptor Signalfaktor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie