Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachstumsfaktoren mit Doppelfunktion

06.04.2006
Max-Planck-Wissenschaftler haben entdeckt, dass bestimmte Signalfaktoren bei Nervenzellen gleich zwei Aufgaben erfüllen: Wachstum und Orientierung

Gehen und Sprechen sind für uns meist selbstverständlich. Doch was wir unbewusst erledigen, verlangt von unserem Körper eine große motorische Leistung: Wie die Musiker in einem Orchester spielen dabei viele Muskeln zusammen. Nerven steuern die zahlreichen Muskelgruppen, die daran beteiligt sind. Doch woher weiß eine Nervenzelle, für welchen Muskel sie zuständig ist? Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried haben mit französischen und amerikanischen Kollegen die Entwicklung von Nervenbahnen bei Mäusen untersucht. Sie fanden heraus, dass spezielle Signalstoffe die Nervenzellen nicht nur wachsen lassen, sondern sie auch geschickt zu den richtigen Muskelfasern leiten (Neuron, 6. April 2006).


Steuerung des Wachstums von Nervenzellen. Im Vordergrund des Bildes teilt sich der von links kommende Hinterbeinnerv. Der obere Teil, der den Beugermuskel innerviert, enthält große Mengen des Ret-Rezeptors (rot gefärbt). Der untere Teil, der den Streckermuskel steuert, bildet dagegen wenig Ret-Rezeptor (gelb gefärbt). Der Nervenast mit der hohen Ret-Konzentration wird zu dem Bereich mit viel Signalfaktor GDNF (hell blau gefärbt) abgelenkt und wächst durch diesen Bereich hindurch. Im Hintergrund ist ein Mausembryo abgebildet, bei dem alle Nervenbahnen angefärbt sind (grau) - mit den Nerven der beiden Hinterbeine rechts und links von der Bildmitte. Bild: Max-Planck-Institut für Neurobiologie


Hinterbein-Nerv eines Mausembryos. Der Nerv verläuft von links oben nach rechts unten (braun); der Nervenast zum Beugermuskel wird durch den Bereich mit hoher GDNF-Konzentration (intensiv blau) nach rechts oben abgelenkt, während der Nervenast zum Streckermuskel weiter nach rechts unten wächst. Vom Streckermuskelnerv zweigen links unten noch vereinzelte Nervenfasern zu einem anderen Bereich mit GDNF ab (leicht blau gefärbt). Der Messbalken entspricht 250 Mikrometer. Bild: MPI für Neurobiologie

Damit sich ein Lebewesen koordiniert bewegen kann, muss der richtige Nerv zum richtigen Muskel finden. Dabei darf er trotz der vielen Richtungswechsel die Orientierung nicht verlieren. Wie das Nervensystem dieses Problem löst, erforschen Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried. Sie untersuchen, mit welchen Mechanismen die Nerven bei der Entwicklung eines Organismus ihr Ziel finden.

Im Nervensystem bilden Nervenzellen lange faserartige Ausläufer, die Axone. Um den Zielmuskel, der weit entfernt liegen kann, zu erreichen, braucht es spezielle Lenkungsfaktoren. Diese Faktoren regen die Axone zum Wachstum in eine bestimmte Richtung an. Sie werden entweder von Zellen des umliegenden Gewebes ausgeschüttet oder auf der Oberfläche der Gewebezellen präsentiert. Die Axone der Nervenzellen haben Empfangsantennen, so genannte Rezeptoren, die solche Faktoren erkennen. Wenn der richtige Faktor an den richtigen Rezeptor bindet, kann sich die Nervenzelle zum passenden Muskel hinstrecken und mit ihm eine dauerhafte Bindung eingehen. Dabei können die Signalfaktoren anziehend oder abstoßend wirken. Auf diese Weise zeigen sie den Nervenzellen, wo es lang geht.

In ihren Experimenten befassten sich Rüdiger Klein und seine Kollegen in der Abteilung Molekulare Neurobiologie des Max-Planck-Instituts für Biochemie und von den Universitäten Michigan (USA) und Marseille (Frankreich) mit dem Signalfaktor GDNF (engl. glial cell line-derived neurotrophic factor) und dessen Rezeptor Ret. Über dieses Signalpaar war bisher nur bekannt, dass es Motoneurone am Leben erhält und das Auswachsen ihrer Axone bewirkt. Nun konnten die Wissenschaftler zum ersten Mal nachweisen, dass das GDNF/Ret-System in der Nervenzelle eine Doppelfunktion hat: Es kann auch Nervenzellen bei der Entwicklung von Organismen zum richtigen Muskelgewebe leiten.

Die Neurobiologen beobachteten dazu die Entwicklung einer motorischen Nervenbahn, die im Hinterbein der Maus den Strecker- und Beugermuskel steuert: Durch Färbemethoden konnten sie nachweisen, dass der Teil der Nervenbahn, der den Beugermuskel versorgt, verstärkt den Rezeptor Ret bildet. Diese Axone wanderten in die Bereiche des Beines, in denen die Forscher besonders viel von dem Faktor GDNF fanden. Schalteten die Wissenschaftler das GDNF/Ret-System genetisch aus, so wanderten die Motoneurone in die falsche Richtung und endeten am Streckermuskel statt am Beugermuskel. Da die Muskeln nun falsch verschaltet waren, konnte sich die Maus nicht richtig bewegen. Das war ein eindeutiger Hinweis darauf, dass das GDNF/Ret-Signalsystem bestimmt, welche Muskeln die Motoneurone ansteuern.

Dabei kooperiert GDNF/Ret mit dem Ephrin/Eph-System. In früheren Versuchen war es den Max-Planck-Forschern bereits gelungen, die Rolle der Ephrine und ihrer Rezeptoren bei der Entwicklung von Nervensystem sowie Blut- und Lymphgefäßen zu entschlüsseln [1]. Damals hatten sie festgestellt, dass dieses Signalpaar den Nerven hilft, Muskeln zu steuern. Ephrin/Eph und GDNF/Ret funktionieren jedoch unabhängig voneinander. Das heißt, die Signalfaktoren eines Systems werden auch gebildet, wenn das andere blockiert ist. Doch die Faktoren eines Systems können alleine nicht dafür sorgen, dass sich die Nervenzellen richtig orientieren.

Damit haben Klein und seine Kollegen gezeigt, dass das GDNF/Ret-Signalpaar für die Ausrichtung der Nervenzellen wichtig sein muss - eine Eigenschaft, die von einem Nervenwachstumsfaktor bisher nicht bekannt war. Dies ist ein weiteres Beispiel dafür, dass die Natur ein bewährtes System mehrfach einsetzt. Denn GDNF dient den Nervenzellen nicht nur als Überlebens- und Wachstumsfaktor, sondern gibt ihnen auch das Ziel vor. Warum die Natur jedoch gleich zwei Signalwege mit gleicher Funktion entwickelt hat, darüber kann Rüdiger Klein, der die Studie leitete, nur spekulieren: "Wir sind erst ganz am Anfang, die einzelnen feinen Mechanismen zu verstehen, die dafür sorgen, dass unser Bewegungsapparat so perfekt mit Nervenzellen verbunden und gesteuert wird. Da das menschliche Nervensystem auf den gleichen Signalsystemen basiert, könnte diese Studie auch helfen, seine Entwicklung besser zu verstehen."

Originalveröffentlichung:
Edgar R. Kramer, Laura Knott, Fengyun Su, Eric Dessaud, Catherine E. Krull, Francoise Helmbacher, Rüdiger Klein

Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor axon pathway selection in the limb. Neuron 50 (1): 35-47 (6 April 2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Axone Muskel Nerv Nervensystem Nervenzelle Neurobiologie Rezeptor Signalfaktor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise