Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachstumsfaktoren mit Doppelfunktion

06.04.2006
Max-Planck-Wissenschaftler haben entdeckt, dass bestimmte Signalfaktoren bei Nervenzellen gleich zwei Aufgaben erfüllen: Wachstum und Orientierung

Gehen und Sprechen sind für uns meist selbstverständlich. Doch was wir unbewusst erledigen, verlangt von unserem Körper eine große motorische Leistung: Wie die Musiker in einem Orchester spielen dabei viele Muskeln zusammen. Nerven steuern die zahlreichen Muskelgruppen, die daran beteiligt sind. Doch woher weiß eine Nervenzelle, für welchen Muskel sie zuständig ist? Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried haben mit französischen und amerikanischen Kollegen die Entwicklung von Nervenbahnen bei Mäusen untersucht. Sie fanden heraus, dass spezielle Signalstoffe die Nervenzellen nicht nur wachsen lassen, sondern sie auch geschickt zu den richtigen Muskelfasern leiten (Neuron, 6. April 2006).


Steuerung des Wachstums von Nervenzellen. Im Vordergrund des Bildes teilt sich der von links kommende Hinterbeinnerv. Der obere Teil, der den Beugermuskel innerviert, enthält große Mengen des Ret-Rezeptors (rot gefärbt). Der untere Teil, der den Streckermuskel steuert, bildet dagegen wenig Ret-Rezeptor (gelb gefärbt). Der Nervenast mit der hohen Ret-Konzentration wird zu dem Bereich mit viel Signalfaktor GDNF (hell blau gefärbt) abgelenkt und wächst durch diesen Bereich hindurch. Im Hintergrund ist ein Mausembryo abgebildet, bei dem alle Nervenbahnen angefärbt sind (grau) - mit den Nerven der beiden Hinterbeine rechts und links von der Bildmitte. Bild: Max-Planck-Institut für Neurobiologie


Hinterbein-Nerv eines Mausembryos. Der Nerv verläuft von links oben nach rechts unten (braun); der Nervenast zum Beugermuskel wird durch den Bereich mit hoher GDNF-Konzentration (intensiv blau) nach rechts oben abgelenkt, während der Nervenast zum Streckermuskel weiter nach rechts unten wächst. Vom Streckermuskelnerv zweigen links unten noch vereinzelte Nervenfasern zu einem anderen Bereich mit GDNF ab (leicht blau gefärbt). Der Messbalken entspricht 250 Mikrometer. Bild: MPI für Neurobiologie

Damit sich ein Lebewesen koordiniert bewegen kann, muss der richtige Nerv zum richtigen Muskel finden. Dabei darf er trotz der vielen Richtungswechsel die Orientierung nicht verlieren. Wie das Nervensystem dieses Problem löst, erforschen Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried. Sie untersuchen, mit welchen Mechanismen die Nerven bei der Entwicklung eines Organismus ihr Ziel finden.

Im Nervensystem bilden Nervenzellen lange faserartige Ausläufer, die Axone. Um den Zielmuskel, der weit entfernt liegen kann, zu erreichen, braucht es spezielle Lenkungsfaktoren. Diese Faktoren regen die Axone zum Wachstum in eine bestimmte Richtung an. Sie werden entweder von Zellen des umliegenden Gewebes ausgeschüttet oder auf der Oberfläche der Gewebezellen präsentiert. Die Axone der Nervenzellen haben Empfangsantennen, so genannte Rezeptoren, die solche Faktoren erkennen. Wenn der richtige Faktor an den richtigen Rezeptor bindet, kann sich die Nervenzelle zum passenden Muskel hinstrecken und mit ihm eine dauerhafte Bindung eingehen. Dabei können die Signalfaktoren anziehend oder abstoßend wirken. Auf diese Weise zeigen sie den Nervenzellen, wo es lang geht.

In ihren Experimenten befassten sich Rüdiger Klein und seine Kollegen in der Abteilung Molekulare Neurobiologie des Max-Planck-Instituts für Biochemie und von den Universitäten Michigan (USA) und Marseille (Frankreich) mit dem Signalfaktor GDNF (engl. glial cell line-derived neurotrophic factor) und dessen Rezeptor Ret. Über dieses Signalpaar war bisher nur bekannt, dass es Motoneurone am Leben erhält und das Auswachsen ihrer Axone bewirkt. Nun konnten die Wissenschaftler zum ersten Mal nachweisen, dass das GDNF/Ret-System in der Nervenzelle eine Doppelfunktion hat: Es kann auch Nervenzellen bei der Entwicklung von Organismen zum richtigen Muskelgewebe leiten.

Die Neurobiologen beobachteten dazu die Entwicklung einer motorischen Nervenbahn, die im Hinterbein der Maus den Strecker- und Beugermuskel steuert: Durch Färbemethoden konnten sie nachweisen, dass der Teil der Nervenbahn, der den Beugermuskel versorgt, verstärkt den Rezeptor Ret bildet. Diese Axone wanderten in die Bereiche des Beines, in denen die Forscher besonders viel von dem Faktor GDNF fanden. Schalteten die Wissenschaftler das GDNF/Ret-System genetisch aus, so wanderten die Motoneurone in die falsche Richtung und endeten am Streckermuskel statt am Beugermuskel. Da die Muskeln nun falsch verschaltet waren, konnte sich die Maus nicht richtig bewegen. Das war ein eindeutiger Hinweis darauf, dass das GDNF/Ret-Signalsystem bestimmt, welche Muskeln die Motoneurone ansteuern.

Dabei kooperiert GDNF/Ret mit dem Ephrin/Eph-System. In früheren Versuchen war es den Max-Planck-Forschern bereits gelungen, die Rolle der Ephrine und ihrer Rezeptoren bei der Entwicklung von Nervensystem sowie Blut- und Lymphgefäßen zu entschlüsseln [1]. Damals hatten sie festgestellt, dass dieses Signalpaar den Nerven hilft, Muskeln zu steuern. Ephrin/Eph und GDNF/Ret funktionieren jedoch unabhängig voneinander. Das heißt, die Signalfaktoren eines Systems werden auch gebildet, wenn das andere blockiert ist. Doch die Faktoren eines Systems können alleine nicht dafür sorgen, dass sich die Nervenzellen richtig orientieren.

Damit haben Klein und seine Kollegen gezeigt, dass das GDNF/Ret-Signalpaar für die Ausrichtung der Nervenzellen wichtig sein muss - eine Eigenschaft, die von einem Nervenwachstumsfaktor bisher nicht bekannt war. Dies ist ein weiteres Beispiel dafür, dass die Natur ein bewährtes System mehrfach einsetzt. Denn GDNF dient den Nervenzellen nicht nur als Überlebens- und Wachstumsfaktor, sondern gibt ihnen auch das Ziel vor. Warum die Natur jedoch gleich zwei Signalwege mit gleicher Funktion entwickelt hat, darüber kann Rüdiger Klein, der die Studie leitete, nur spekulieren: "Wir sind erst ganz am Anfang, die einzelnen feinen Mechanismen zu verstehen, die dafür sorgen, dass unser Bewegungsapparat so perfekt mit Nervenzellen verbunden und gesteuert wird. Da das menschliche Nervensystem auf den gleichen Signalsystemen basiert, könnte diese Studie auch helfen, seine Entwicklung besser zu verstehen."

Originalveröffentlichung:
Edgar R. Kramer, Laura Knott, Fengyun Su, Eric Dessaud, Catherine E. Krull, Francoise Helmbacher, Rüdiger Klein

Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor axon pathway selection in the limb. Neuron 50 (1): 35-47 (6 April 2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Axone Muskel Nerv Nervensystem Nervenzelle Neurobiologie Rezeptor Signalfaktor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik