Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzell-Therapie lässt Sehnen und Bänder wachsen

04.04.2006
Forscher kurieren Verletzungen bei Ratten

Sehnenverletzungen mittels einer Stammzell-Therapie heilen: Das könnte in Zukunft medizinisch möglich sein. Bei Ratten mit einer geschädigten Achillessehne ist es Wissenschaftlern jetzt gelungen. Die Forscher verpflanzten Stammzellen in die verletzte Sehne und stimulierten sie mit einem Wachstumsfaktor und einem Signalmolekül namens "Smad8", was zu einer Regeneration des Sehnen-Gewebes führte. Seine Erkenntnisse beschreibt das deutsch-israelische Forscherteam, dem Wissenschaftler der Gesellschaft für Biotechnologische Forschung (GBF) in Braunschweig angehören, in der jüngsten Ausgabe der Fachzeitschrift "Journal of Clinical Investigation".

Sehnen- und Bänderverletzungen, wie sie beim Sport, aber auch bei Rheuma- oder Diabeteskranken auftreten, sind für klinische Mediziner noch immer eine beträchtliche Herausforderung. Allein in den USA unterziehen sich jedes Jahr rund 200 000 Patienten einer Sehnen- oder Bänderbehandlung. "Um gerissene Sehnen oder Bänder zu heilen, gibt es nur wenige Optionen", erklärt GBF-Wissenschaftler Dr. Gerhard Gross. "Meist transplantiert man dazu eigenes oder fremdes Sehnen-Gewebe oder einen künstlichen Gewebe-Ersatz." Zufrieden stellende Langzeit-Lösungen, so Gross, böten all diese Methoden nicht: "Es kommt häufig zu Komplikationen, von Immun- und Abstoßungsreaktionen bis zur Abnutzung des Implantats."

Eine alternative Methode hat die GBF-Arbeitsgruppe von Dr. Gross, Dr. Andrea Hoffmann und ihren israelischen Kollegen aus Jerusalem und Tel Aviv jetzt erfolgreich erprobt und beschrieben. Sie verwendeten dazu adulte Stammzellen, die - anders als die embryonalen Stammzellen, deren Einsatz in der Forschung umstritten ist - im Körper erwachsener Menschen vorkommen, aber auch gut in Kultur gezüchtet werden können. Ein Untertyp, die so genannten mesenchymalen Stammzellen (kurz: MSC), wird im Knochenmark gebildet. MSC dienen dem Organismus als vielseitige Eingreiftruppe: "Aus MSC können sich bei Bedarf knochenbildende Zellen entwickeln", erklärt Andrea Hoffmann, "aber auch knorpelbildende oder Muskelzellen oder Fettspeicherzellen. Und vor allem, was uns am meisten interessiert: Sehnenzellen."

Um die MSC dazu zu bringen, muss allerdings Smad8 in vorhanden sein: Dieses Molekül überträgt Signale, die die Zelle von außen erhält, und übersetzt sie in den "Befehl", Sehnen zu bilden. Gross, Hoffmann und die israelischen Kollegen konnten zeigen: MSC-Zellen, die besonders viel Smad8 sowie den ebenfalls bedeutsamen Wachstumsfaktor Bmp2 produzieren, sorgen für massenhaftes Sehnen-Wachstum. Zumindest bei Ratten ließ sich dieser Effekt auch für eine Therapie nutzen.

"Ob ein entsprechendes Heilungsverfahren auch beim Menschen wirken würde, müssen künftige Untersuchungen zeigen", erklärt Gross. "Es wird sicher mehrere Jahre dauern, bis das erprobt ist."

Hinweise für die Medien
Detaillierte Informationen bietet der Originalartikel: A. Hoffmann, G. Pelled, G. Turgeman, P. Eberle, Y. Zilberman, H. Shinar, K. Keinan-Adamsky, A. Winkel, S. Shahab, G. Navon, G. Gross and D. Gazit. Neotendon Formation Induced by Manipulation of the Smad8 Signalling Pathway in Mesenchymal Stem Cells. Journal of Clinical Investigation, 2006.

Manfred Braun | idw
Weitere Informationen:
http://www.gbf.de

Weitere Berichte zu: MSC Ratte Sehne Stammzell-Therapie Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE