Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wunder Axolotl: Von Zellen und nachwachsenden Organen

23.03.2006


Über die Fähigkeit des Axolotls, verlorene Körperteile zu ersetzen, rätseln Forscher seit Jahrhunderten. Kann man Herz, Muskeln, Beine auch beim Menschen einfach nachwachsen lassen? Über die Möglichkeiten der Regenerativen Medizin diskutierten Forscher auf dem "Treffpunkt WissensWerte". Die Zusammenfassung der Talkrunde wird am 26.3.06, 9.22-10 Uhr auf rbb Inforadio 93,1 gesendet.


Der Axolotl ist ein Wundertier. Ein Schwanzlurch, der abgetrennte Gliedmaßen vollständig und fast narbenlos regenerieren kann. Schwanz oder Beine wachsen dem Axolotl innerhalb weniger Tagen wieder nach - mitsamt Nerven, Muskulatur und Blutgefäßen. Eine Riesenchance für die Medizin, wenn Wissenschaftler erkennen könnten, welcher Wirkungsmechanismus dahinter steckt.

Um diesen Mechanismus zu verstehen, muss man bei der Zelle anfangen, sagt Dr. Michael Sittinger. "Die Zelle braucht bestimmte Signale und Werkzeuge, damit sie sich vermehrt und zu Gewebe entwickelt. Wenn man weiß, welche Signale und welche Werkzeuge das sind, dann kann man auch von außen das Zellwachstum steuern."


Haut und Knorpel werden außerhalb des Körpers nachgezüchtet

Sittinger erforscht an der Berliner Charité den Bereich "Tissue Engineering" - eine Technologie, bei der man versucht, Gewebe nachzubauen. Entweder im Körper des Patienten oder im Labor. Haut zum Beispiel oder Knorpel - das sind bereits zwei gängige Einsatzmöglichkeiten für Tissue Engineering. Ein schwieriges und aufwendiges Verfahren. "Denn schließlich sind es keine Geräte, die man zusammenbaut, sondern lebende Zellen", sagt Sittinger. Jedem einzelnen Patienten wird körpereigenes Material entnommen und über Wochen hinweg individuell vermehrt, so dass sich neues Gewebe bildet. Handarbeit.

Nicht nur beim Tissue Engineering, sondern im gesamten Bereich der Regenerativen Medizin befindet sich die Wissenschaft gerade erst am Anfang. Über die Möglichkeiten, die sie bietet, sind sich die Wissenschaftler aber schon heute bewusst. Einen Quantensprung könnte zum Beispiel erreicht werden, wenn man verschiedene Forschungszweige miteinander kombiniert, sagt Prof. Dr. Andreas Lendlein.

Implantate, die sich verwandeln; Nähte, die sich selber verknoten

Lendlein arbeitet an so genannten Formgedächtniskunststoffen. Das sind synthetische Stoffe, die durch Licht oder Magnetfelder ihre Form verändern. Wie Blütenblätter, die sich bei Sonnenlicht öffnen. Formgedächtniskunststoffe werden schon heute zum Beispiel bei Operationen eingesetzt: Nähte, die sich von allein auflösen oder Drähte, die sich im Körper selbständig abbauen.

Eine Herausforderung für seinen Forschungszweig sieht Lendlein in der Knopflochchirurgie - Operationen, bei der sämtliche Instrumente durch ein Knopfloch passen. Wie bekommt man durch diese minimale Öffnung große Implantate? Indem man das Implantat mit Eigenschaften von Formgedächtniskunststoffen versieht, erklärt Lendlein. "So kann der Chirurg die Implantate in einer komprimierten Form durch die Öffnung bringen. Bei Raumtherapie haben die Implantate eine geschlossene Form. Innen erwärmen sie sich auf Körpertemperatur und entfalten ihre eigentliche Form." Lendlein sieht eine weitere Verwendungsmöglichkeit für Formgedächtniskunststoffe in der Knopflochchirurgie: Nähte, die sich selber verknoten. Für Chirurgen ist es eine Kunst, an Gefäßen oder Organen einen Knoten zu ziehen, der nicht zu fest, aber auch nicht zu locker sitzt. Ein Faden, der sich selber mit der idealen Spannung verknotet, könnte ihnen diese Arbeit abnehmen, so Lendlein. Den Wissenschaftlern eröffnen sich ungeahnte Möglichkeiten.

Wie etwas benutzen, was man gar nicht versteht

Die werden auch von der Stammzellentherapie erwartet. Auch hier steht man noch ganz am Anfang. Grundlagenforschung, sagt Dr. Andreas Kurtz. Denn wie will man etwas benutzen, was man gar nicht versteht. Einige Mechanismen der Stammzelle haben die Forscher bereits erkannt. "Zum Beispiel dass sich embryonale Stammzellen extrem gut teilen und vermehren. Viel besser als adulte. Nur wissen wir noch nicht, warum?", sagt Kurtz. Hinter dieser einfachen Frage verbirgt sich ein großer Forschungskomplex. Denn, lässt sie sich klären, könnten auch andere Rätsel der Stammzelle gelöst werden: Ist das Ergebnis auf adulte Stammzellen übertragbar? Wie werden aus embryonalen Stammzellen Herz-, Knorpel, oder Hirnzellen? Kann man die Teilungsfreudigkeit der embryonalen Stammzelle der adulten beibringen?

An der Beantwortung dieser Fragen ist auch Dr. Herrmann Graf interessiert. Graf arbeitet für den Pharmakonzern Schering im Bereich Cell Therapy. Die gesetzlichen Regelungen sieht er dabei als nicht zu eng. Nach dem Embryonenschutzgesetz ist es in Deutschland verboten, menschliche Embryonen für Forschungszwecke herzustellen oder zu zerstören. Geforscht werden darf lediglich an aus dem Ausland importierten embryonalen Stammzellen. Allerdings nur, wenn sie vor dem 1. Januar 2002 gewonnen wurden. Für gesetzliche Änderungen sieht Graf keine Notwendigkeit: "Wir wissen über die embryonalen Stammzellen der Maus noch so wenig. Es gebietet sich deshalb beim Menschen erst gar nicht."

Zukunft der Regenerativen Medizin

Die Erwartungen, was man mit der Regenerativen Medizin in absehbarer Zukunft erreichen kann, sollten realistisch bleiben, sagt Dr. Lendlein. Ganze Organe nachzüchten - das bleibt vorerst Utopie. Menschen, die 300 Jahre alt werden ebenso. Man wird eher kleine Fortschritte in Teilbereichen machen. "Bei den Alterskrankheiten zum Beispiel. Die Lebensqualität im Alter halten - das sollte ein Ziel der Regenerativen Medizin sein." Aber auch dafür müssen zuerst in der Grundlagenforschung die wichtigsten Fragen beantwortet sein, dann kann man sich weitere Bereiche erschließen, so Lendlein.

Wie das Wundertier Axolotl seine Gliedmaßen regeneriert, auch dieser Frage werden die Wissenschaftler weiterhin auf der Spur bleiben. Ein paar Faktoren hat man bereits erkannt. Stammzellen spielen auch beim Axolotl eine wichtige Rolle, aus denen sich noch jeder beliebige Gewebetyp bilden kann. Nur wie, das wissen die Forscher nicht. Es dem Axolotl nachzumachen, davon bleiben die Wissenschaftler daher vorerst noch weit entfernt.

Kristin Krüger

Podium

· Dr. Andreas Kurtz, Robert Koch Institut, Leiter der Zulassungsstelle für Forschung mit embryonalen Stammzellen
· Prof. Dr. Andreas Lendlein, GKSS Forschungszentrum Teltow, Leiter Institut für Polymerforschung und Professor an der Universität Potsdam. Lehrstuhl für Materialien in den Lebenswissenschaften
· PD Dr. Michael Sittinger, Charité - Universitätsmedizin Berlin, Labor für Tissue Engineering
· Dr. Hermann Graf, Schering AG, Leiter Cell Therapy

Moderation

Thomas Prinzler, Wissenschaftsredaktion rbb Inforadio

Der Treffpunkt WissensWerte ist eine Veranstaltung der TSB Technologiestiftung Berlin, rbb Inforadio und der Technologie Stiftung Brandenburg. Die Talkrunde bildete den Abschluss der Reihe "Projekt Selbstheilung", die die TSB Technologiestiftung Berlin in Kooperation mit BioTOP Berlin-Brandenburg und der Regenerativen Medizin Initiative Berlin (RMIB) durchgeführt hat.

Annette Kleffel | idw
Weitere Informationen:
http://www.technologiestiftung-berlin.de
http://www.technologiestiftung-berlin.de/index.php/news/2246.html

Weitere Berichte zu: Axolotl Implantat Organ Regenerativ Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geckos kommunizieren überraschend flexibel
29.05.2017 | Max-Planck-Institut für Ornithologie

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise