Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenmoleküle in sanftem Landeanflug

23.03.2006
Deutsch -Italienischem Forscherteam gelingt es erstmals, synthetische Makromoleküle zu organischen Halbleitern zu verarbeiten.

Elektronische Chips sind heute schon Massenware. Und sie sollen noch preiswerter werden: Die organische Elektronik soll es möglich machen. Wissenschaftler am Max-Planck-Institut für Polymerforschung in Mainz haben jetzt zusammen mit italienischen Forschern eine Methode entwickelt, um organische Moleküle verarbeiten zu können, die nicht löslich sind und sich auch nicht verdampfen lassen. So ließen sich aus ihnen beispielsweise elektronische Bauteile herstellen. Die Forscher haben große Graphit-Moleküle mit einer speziellen Methode der Massenspektroskopie verdampft und anschließend sanft landen lassen. Dabei ordneten die Teilchen sich in leitfähigen Schichten an. (Nature Materials, 12. März 2006)


Unter dem Rastertunnelmikroskop offenbaren die Molekülschichten ihre Struktur. Die Pfeile markieren die unterschiedlichen Orientierungen der Moleküle. Bild: Max-Planck-Institut für Polymerforschung


Die sechseckigen Moleküle stehen nach der sanften Landung mit ihren Kanten auf dem leitfähigen Untergrund und ordnen sich wie Dominosteine in Reihen an. Dabei stellen sie sich in zwei verschiedenen Richtungen auf. Bild: Max-Planck-Institut für Polymerforschung

Computerchips und andere elektronische Bauelemente bestehen heute noch größtenteils aus Silizium - einem anorganischen Halbleiter. Für neue Anwendungen müssen sie aber noch preiswerter werden: Dann könnten sie sich hinter jedem Preisschild verstecken, als Sensoren in unserer Kleidung arbeiten oder als elektronische Wasserzeichen Dokumente sichern. Chips aus organischen Materialien könnten das ermöglichen. Denn auch viele organische Moleküle taugen als Leiter oder Halbleiter. Dabei gilt: Je größer die Teilchen, umso leitfähiger. Große organische Moleküle weisen jedoch eine starre und komplexe Struktur auf, die sie unlöslich macht und die beim Verdampfen zerstört wird. Um aus ihnen Bauelemente produzieren zu können, müssen Moleküle aber im gelösten oder gasförmigen Zustand vorliegen. Wenn Wissenschaftler also die elektrischen Eigenschaften von Molekülen verbessern, erschweren sie sich somit automatisch die Handhabung.

Die Forschungsgruppe von Prof. Klaus Müllen und Dr. Hans Joachim Räder vom Max-Planck-Institut für Polymerforschung hat jetzt eine Methode entwickelt, um extrem große polyzyklische aromatische Kohlenwasserstoffe zu verarbeiten. Dazu entwickelten die Mainzer Wissenschaftler zunächst eine modifizierte Methode der Matrix-unterstützten-Laserdesorptions/Ionisations (MALDI) Massenspektrometrie, mit der die unlöslichen Riesenmoleküle schon heute zuverlässig nachgewiesen und charakterisiert werden können. Die MALDI-Massenspektrometrie ermöglicht es, auch große Moleküle unzersetzt als geladene Teilchen in die Gasphase zu überführen. Dabei werden die Moleküle von einer Matrix anderer Teilchen umhüllt, die mit ihnen verdampfen und die überschüssige Energie schlucken, die das Molekül sonst zerstören würde. Die dabei gebildeten Ionen werden anschließend in einem elektrostatischen Feld beschleunigt und in einem Magnetfeld nach ihrem Molekulargewicht aufgetrennt. Das geschieht im Grunde in jedem Massenspektrometer.

Um die Moleküle wohlbehalten auf einer Oberfläche abzuscheiden, bremsen die Polymerforscher die mit mehrfacher Ultraschallgeschwindigkeit fliegenden Moleküle wieder ab. Sie lassen die Moleküle auf einer Oberfläche sanft landen, so dass sie nicht wie üblich zerschellen, wenn sie auf einen Detektor prallen. Möglich wird diese sanfte Landung, weil ein elektrostatisches Bremsfeld die Moleküle verlangsamt. Den Max-Planck-Forschern gelang es damit jetzt erstmals, ultradünne kristalline Schichten auch von sehr großen Molekülen auf einem leitfähigen Substrat herzustellen. So erzeugten sie Filme, die jeweils aus aromatischen Molekülen mit 42 und 96 Kohlenstoffatomen bestanden. Die größeren der beiden Moleküle haben sie so zum ersten Mal zu Schichten aneinander gelagert. Filme aus den Graphit-Molekülen mit 42 Kohlenstoffatomen ließen sich zwar auch schon mit den gängigen Methoden produzieren, die mit gasförmigen oder gelösten Teilchen arbeiteten. Anders als bei diesen landeten die plättchenförmigen Moleküle bei dem neuen Verfahren aber nicht flach auf dem leitfähigen Untergrund, sondern mit ihren Kanten. Sie ordneten sich also nicht wie die Teile eines Puzzles an, sondern eher wie Dominosteine in einer Reihe.

Das stellten italienische Wissenschaftler des Consiglio Nazionalle delle Ricerche in Bologna fest, als sie die Schichten mit einem Rastertunnelmikroskop charakterisierten. Für mögliche Anwendungen als Halbleiter, ist es sehr günstig, dass sich die Moleküle hintereinander aufreihten. Dann sind die Ladungsträger nämlich besonders beweglich, weil die Elektronenwolken dabei sehr gut überlappen.

Da ein Massenspektrometer die ionisierten Moleküle nach ihrem Masse/Ladungsverhältnis trennt, liegen sie außerdem in hochreiner Form vor. Somit gelang es den Forschern, isotopenreine Proben der großen Graphitmoleküle zu erzeugen. Gerade um elektronische Bauteile herzustellen, ist diese Reinigung von enormer Bedeutung, da unlösliche und nichtflüchtige Verbindungen mit konventionellen Methoden nicht zu reinigen sind. Mit dem neuentwickelten Verfahren lassen sich nun auch neue Substanzklassen in der organischen Elektronik einsetzen. Außerdem könnte es zukünftig helfen, die bisher wenig zugängliche Chemie von Makromolekülen im festen Zustand besser zu erforschen.

[KM]

Originalveröffentlichung:

Hans Joachim Räder, Ali Rouhanipour, Anna Maria Talarico, Vincenzo Palermo, Paolo Samorì and Klaus Müllen
Processing of giant graphene molecules by soft-landing mass spectrometry
Nature Materials, 12 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Halbleiter Molekül Riesenmoleküle Schicht Teilchen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten