Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nimm zwei!

20.10.2005


Die Protein-Kinase STN8 befindet sich in den Chloroplasten des Blattes. Mit Hilfe der konfokalen Lasermikroskopie erkennt man auf dem linken Bild das rot leuchtende Marker-Protein und in der Mitte ist die Autofluoreszenz der Chloroplasten (grün) dargestellt. Rechts sind beide Bilder fotomontiert. Bild: Max-Planck-Institut für Züchtungsforschung


Kölner Max-Planck-Forscher haben herausgefunden, wie Protein-Kinasen in Pflanzen die Anpassung an andere Lichtbedingungen steuern


Das gesamte Leben auf der Erde hängt von der Photosynthese ab, jenem Prozess, bei dem Lichtenergie für den Aufbau organischer Substanzen genutzt wird. Wenn sich die Lichtverhältnisse ändern, muss sich die Pflanze darauf einstellen und anpassen, wobei man drei unterschiedliche Arten der Anpassung unterscheidet. Die Pflanze dreht dabei an den Knöpfen der Photosynthese-Maschinerie und verändert wichtige "Protein-Zahnräder". Max-Planck-Wissenschaftler beschreiben jetzt in der Fachzeitschrift Nature (Nature, 20. Oktober 2005), wie zwei Protein-Kinasen, also Enzyme, die Phosphat-Gruppen an andere Proteine anhängen, die verschiedenen Anpassungen des Photosynthese-Apparats steuern und damit der Pflanze ermöglichen, sich besser an veränderte Lichtbedingungen anzupassen.

Die Photosynthese ist ein recht komplexer Prozess, ohne den Leben auf der Erde nur schwer oder nur für exotische Mikroorganismen möglich wäre. Man benötigt zwei Moleküle: Kohlendioxid und Wasser. Von beiden gibt es riesige Mengen. Die Pflanze schickt diese beiden Komponenten durch die Photosynthese-Maschinerie, dort werden beide Komponenten verbunden und Zuckermoleküle synthetisiert. Von diesen süßen Energielieferanten ernährt sich die Pflanze und indirekt alle anderen Lebewesen.


Für die Anpassung der Photosynthese an andere Lichtverhältnisse gibt es drei Mechanismen: 1. die kurzfristige Anpassung, bei der die Licht sammelnden Antennen innerhalb von Minuten umgebaut werden, 2. die langfristige Anpassung, bei der die Zusammensetzung und das Verhältnis der Photosystem zueinander innerhalb von Tagen verändert wird, und 3. die Phosphorylierung bestimmter Proteine des Photosystem II, von der man bisher annahm, dass dies für den Austausch defekter Photosyntheseproteine erforderlich ist.

Ein kleiner molekularer Helfer, die Protein-Kinase STN7, ist für die erste und zweite Form der Anpassung zuständig, und eine verwandte Kinase, STN8, für die dritte Art der Anpassung. Während die Funktion von STN7 bei der ersten Form der Anpassung bereits bekannt war, konnte das Forscherteam aus Köln und München mit Unterstützung aus Jena und Düsseldorf zeigen, dass STN7 auch für die zweite Form der Anpassung erforderlich ist und die Rolle des Enzyms STN8 bei der dritten Art der Anpassung aufklären. Das Team um Dario Leister vom Max-Planck-Institut für Züchtungsforschung in Köln hat damit einen Meilenstein in der Erforschung der Anpassung des Photosynthese-Mechanismus an veränderte Lichtbedingungen gesetzt.

STN8 verändert das Herz des Photosystems II, indem es dort Proteine phosphoryliert. Diese Phosphorylierung wurde für lange Zeit als entscheidend beim Austausch defekter Proteine des Photosystem II angesehen. Die Forscher konnten jedoch zeigen, dass die Phosphorylierung von Proteinen des Photosystems II nicht Maß gebend für deren Austausch ist. Damit stellt sich jetzt die Frage, wofür diese Phosphorylierung überhaupt benötigt wird. Dieser sowie der Frage, wie die STN7-Kinase die kurz- und langfristige Anpassung der Photosynthese koordiniert, wollen die Forscher in Zukunft nachgehen. Erste Anhaltspunkte konnten sie in der Nature-Publikation bereits liefern: Die Phosphorylierung bestimmter photosynthetischer Proteine scheint für die Regulation spezieller Gene im Chloroplasten und im Zellkern Maß gebend zu sein.

Weitere Informationen erhalten Sie von:

Prof. Dr. Dario Leister
Botanisches Institut, Ludwig-Maximilians-Universität, München
Tel.: 089 17861-200/201
Fax: 089 171683
E-Mail: leister@lrz.uni-muenchen.de

Dipl.-Biol. Claudia Lorenz (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Züchtungsforschung, Köln
Tel.: 0221 5062-672
Fax: 0221 5062-674

Prof. Dr. Dario Leister | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.uni-muenchen.de
http://www.mpiz-koeln.mpg.de

Weitere Berichte zu: Pflanze Phosphorylierung Photosynthese Photosystem Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Leuchtende Echsen - Knochenbasierte Fluoreszenz bei Chamäleons
15.01.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein „intelligentes Fieberthermometer“ für Mikrochips

16.01.2018 | Informationstechnologie

Diagnostik der Zukunft - Europäisches Projekt zur Erforschung seltener Krankheiten startet

16.01.2018 | Förderungen Preise

Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

16.01.2018 | Biowissenschaften Chemie