Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bald Früherkennung von Alzheimer?

10.08.2005


Auf dem Weg zu Kontrastmitteln, die Amyloid-Ablagerungen in Gehirn sichtbar machen



Die Alzheimer-Krankheit ist die häufigste Form der Altersdemenz und in den USA bereits die vierthäufigste Todesursache. Ursache der Erkrankung sind Protein-Ablagerungen im Gehirn, die so genannten Amyloid-Plaques. Bisher kann man die Plaques nur bei einer Autopsie identifizieren, eine zweifelsfreie Diagnose also erst nach dem Tod des Patienten stellen. Dabei wäre eine Früherkennung wichtig, um die Krankheit besser zu verstehen und Behandlungsmethoden zu entwickeln, die ihr Fortschreiten stoppen könnten. Die Forschung arbeitet daher an nicht-invasiven bildgebenden Verfahren zum Nachweis der Plaques. Amerikanische Wissenschaftler haben nun einen Grundstein für ein Kontrastmittel gelegt, das Amyloid-Ablagerungen markieren könnte.



Erste nicht-invasive Methoden zum Nachweis von Plaques im Gehirn, die mit radioaktiven Kontrastmitteln arbeiten, sind in Entwicklung. Nun zeichnet sich eine interessante Alternative ab: optische Bildgebungsverfahren mit spezifischen Kontrastmitteln, die bei Bestrahlung im nahen Infrarot-Spektralbereich fluoreszieren. Dieses relativ langwellige Licht ist in der Lage, lebendes Gewebe gut genug zu durchdringen, um Hirnstrukturen sichtbar zu machen. "Was man dafür braucht," sagt Timothy M. Swager, "ist ein geeignetes Kontrastmittel." Zusammen mit einem Team aus Wissenschaftlern vom MIT, dem Massachusetts General Hospital und der Universität von Pittsburgh überlegte er, welche Anforderungen ein solches Kontrastmittel erfüllen muss: 1) Es muss sich spezifisch an Amyloid-Plaques anlagern. Das tun bestimmte Moleküle mit einem Gerüst aus flachen aromatischen Ringen, wie etwa Kongorot, das zum Anfärben der Plaques auf histologischen Schnitten eingesetzt wird. 2) Die Substanz muss nach der Injektion rasch die Blut-Hirn-Schranke passieren, um aus dem Blut ins Gehirn zu gelangen. Dafür muss das Molekül klein, ungeladen und leicht lipophil (fettfreundlich) sein. 3) Seine Absorption und Fluoreszenz müssen im richtigen Spektralbereich liegen - eine Frage der Elektronenstruktur. 4) Für einen besonders scharfen Kontrast sollten gebundene Markermoleküle stärker fluoreszieren als ungebundene. Das klappt, wenn das Molekül an die Plaques angelagert wesentlich weniger in sich beweglich ist als im freien Zustand. 5) Es darf nicht toxisch sein.

Tatsächlich gelang es den Forschern, ganz gezielt ein Molekül zu entwerfen, das diese Anforderungen erfüllt. "Damit aus diesem ersten Molekül-Entwurf ein praxistaugliches Kontrastmittel wird, das Amyloid-Plaques durch den Schädelknochen hindurch sichtbar macht," so Swager, "muss aber noch weiter an dessen optischen Eigenschaften getüftelt werden: Die Fluoreszenzstrahlung muss stärker werden und sollte noch etwas langwelliger sein."

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de
http://www.gdch.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit