Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

500.000 Liter Helium verflüssigt

21.07.2005


Tieftemperaturservice der Universität Jena begeht kühles Jubiläum



Im Tieftemperaturlabor des Instituts für Festkörperphysik der Universität Jena ist es zwar im Kontrast zur sommerlichen Außentemperatur angenehm kühl. Doch dies ist nichts verglichen mit den Temperaturen, die im Kühlaggregat erreicht werden: Mit diesem Unikat können Proben für Gütemessungen auf Temperaturen bis hinab zu 4,2 Kelvin (-269 °C) gekühlt werden. Bei dieser Temperatur zerbröselt ein Ast in Sekunden wie ein vertrocknetes Blatt. Möglich wird solche Kühlung "durch die unmittelbare Anbindung an den Tieftemperaturservice der Physikalisch-Astronomischen Fakultät, der das Labor mit flüssigem Helium als Kältemittel versorgt", betont Dekan Prof. Dr. Paul Seidel. Die einzige Anlage zur Heliumverflüssigung in Thüringen konnte jetzt ein Jubiläum begehen: Seit die Verflüssigeranlage im Jahr 1976 in Betrieb gegangen ist, konnten 500.000 Liter Flüssighelium aufbereitet werden.



"Flüssighelium ist ein Stoff der Extreme", unterstreicht Laborleiter Matthias Thürk. Mit suprafluidem Helium können extrem tiefe Temperaturen erreicht werden, die viele natürliche Prozesse verlangsamen und so der Forschung erst zugänglich machen. So können nur in solch kalter Umgebung makroskopische Quanteneffekte untersucht werden, die Voraussetzung für zukünftige Quantencomputer sind. Auch extrem hohe Magnetfelder über 8 Tesla, die z. B. in den Magnetresonanztomographen im Klinikum erreicht werden müssen, können ausschließlich mit heliumgekühlten Magneten realisiert werden. Die Messung extrem kleiner Magnetfelder ist ebenfalls nur bei kryogenen Temperaturen möglich. So werden beispielsweise im Institut für Festkörperphysik hochempfindliche Magnetfeldsensoren (Supraleitende Quanteninterferenz-Detektoren, SQUIDs) auf der Basis von Hochtemperatursupraleitern (Hoch-TC) entwickelt, hergestellt und für unterschiedliche Aufgabengebiete eingesetzt - etwa für ein klinisches Messsystem für Magnetokardiografie (MKG).

Und nicht nur die Mediziner und Forscher der Friedrich-Schiller-Universität profitieren vom Tieftemperaturservice (TTS). Weitere Forschergruppen und Firmen, etwa auf dem Wissenschaftscampus Beutenberg, erhalten das Helium vom TTS und nutzen sein kryotechnisches Know-how. Da Flüssighelium 1.000 Mal schneller verdampft als Wasser ist es aufwändig, die kostbare Kühlflüssigkeit zu den Forschern zu leiten. Das Helium muss extrem gut von der ,heißen’ Umgebung isoliert werden. "Die dabei erreichten Isolationswerte sind 1.000 Mal besser als sie modernste Dämmtechnologien in der Gebäudetechnik erreichen", macht Thürk an einem Beispiel deutlich. Auch bei der Rückverflüssigung nach Gebrauch müssen technische Extremwerte realisiert werden. Damit ist der Tieftemperaturservice der Jenaer Universität selber ein Hochtechnologieträger und "kann als Treiber für die Technologieregion Jena bezeichnet werden", ist sich Prof. Seidel sicher.

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Festkörperphysik Helium Temperatur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen