Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer Regulationsmechanismus in Pflanzenzellen

30.06.2005


Tübinger berichten in "Nature", wie das Hormon Auxin seinen eigenen Transport beeinflusst



Eine Pflanze muss an ihrem Standort von der ersten Zelle an zurechtkommen: nach unten muss sie Wurzeln bilden, um sich im Boden zu verankern, der Stängel sollte in die entgegengesetzte Richtung wachsen, sich verzweigen, und die Blätter müssen optimal zum Licht ausgerichtet werden. Bei diesen Entwicklungsprozessen führt das Pflanzenhormon Auxin Regie. Es ist innerhalb der pflanzlichen Gewebe ungleich verteilt und gibt auf diese Weise das Signal zur Ausbildung einer Achse oder beim späteren Wachstum zur Bildung und Ausrichtung der Seitenorgane. Dabei nimmt das Hormon über eine ganze Reihe von Schritten Einfluss auf die Aktivität der Gene in den Zellen. Das Auxin haben Tübinger Wissenschaftler vom Zentrum für Molekularbiologie der Pflanzen schon länger untersucht. So haben sie früher bereits entdeckt, dass für den Auxintransport die so genannten PIN-Proteine zuständig sind. Nun sind Tomasz Paciorek, Dr. York-Dieter Stierhof, Jürgen Kleine-Vehn, Prof. Gerd Jürgens, Dr. Niko Geldner und Dr. Jirí Friml vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen in Zusammenarbeit mit Kollegen in Prag, von der RWTH Aachen und der britischen University of Southampton einer weiteren Wirkungsweise des Auxins auf die Spur gekommen: Das Pflanzenhormon nimmt in einer Rückkoppelungsreaktion auch auf seinen eigenen Transport Einfluss. Der dahinter steckende zellbiologische Mechanismus, bei dem das Auxin auf den ständigen Proteinverkehr in der Zelle einwirkt, war in dieser Art bisher nur von tierischen Zellen, nicht aber von Pflanzenzellen bekannt. Wie bereits zuvor - zuletzt im vergangenen Januar - berichten die Tübinger Wissenschaftler auch diesmal in der Fachzeitschrift Nature über ihre neuesten Forschungsergebnisse (Nature, Band 435, Seiten 1251-1256, vom 30. Juni 2005).



Von den PIN-Proteinen, die für den Transport des Auxins zuständig sind, gibt es mehrere unterschiedliche Typen. So findet sich PIN1 zum Beispiel unten, PIN2 oben und PIN3 seitlich in der Zelle. Sie sorgen dafür, dass das Auxin nur in einer Richtung weitertransportiert wird und sich an bestimmten Stellen konzentriert. Dadurch wird nicht nur in der einen Zelle festgelegt, wo oben und wo unten ist. Über den ungleichen Abtransport des Auxins in Nachbarzellen werden auch diese in ihrer Orientierung beeinflusst. So kann sich in vielen kleinen Schritten die Gestalt der Pflanze herausbilden. Die PIN-Proteine sitzen in der Plasmamembran, der äußeren Hülle der Zelle. Die Tübinger Forscher haben festgestellt, dass sie aber nicht unbeweglich sind. Ständig schnüren sich Stücke der flexiblen Zellmembran nach innen ein, lösen sich als runde Vesikel ab und treiben ins Zellinnere zu den Endosomen, kleinen Zellorganen. Endocytose nennen die Wissenschaftler diesen Vorgang. Beim umgekehrten Prozess, der Exocytose, verschmelzen die Vesikel wieder mit der Zellmembran. So herrscht ein reger Verkehr, bei dem die PIN-Proteine zusammen mit weiteren Proteinen ständig zwischen der Zellmembran und den Endosomen kreisen. Das Auxin können die PIN-Proteine allerdings nur weitertransportieren, wenn sie in der Zellmembran sind.

Von tierischen und menschlichen Zellen war bekannt, dass ein solcher ständiger Proteinverkehr innerhalb der Zelle bestimmten Hormonen Regulierungsmöglichkeiten bietet, zum Beispiel beim Insulin. Tatsächlich konnten die Tübinger Wissenschaftler jetzt nachweisen, dass in der Modellpflanze der Genetiker, der Ackerschmalwand (Arabidopsis thaliana), das Hormon Auxin in den ständigen Proteinverkehr eingreift. Es hemmt die Endocytose, sodass die PIN-Proteine länger in der Zellmembran bleiben und das Auxin auf diese Weise seinen eigenen Abtransport fördert. Die Wissenschaftler stellten fest, dass bei der Wachstumsreaktion der Pflanze auf die Schwerkraft (Gravitropismus) der ungleiche Auxintransport mit einem sinkenden PIN-Protein-Wechsel in Endosomen korreliert ist. Andere Pflanzenhormone als das Auxin, wie zum Beispiel Ethylen oder Gibberelline, zeigten in den Experimenten keine Wirkung auf den Proteinverkehr. Die Hemmung der Endocytose durch Auxin haben die Wissenschaftler an Mutanten der Ackerschmalwand untersucht, die im Vergleich zu den Normaltypen eine erhöhte Auxinkonzentration in den Zellen haben. Außerdem haben sie die Zellmembran mit einem fluoreszierenden Farbstoff markiert und konnten so unter dem Mikroskop die Endocytsoeaktivität in der Zelle direkt beobachten.

Damit haben die Forscher nicht nur einen weiteren Schritt im überaus komplizierten Netzwerk der Auxinwirkungen aufgeklärt, sondern auch diesen speziellen Regulationsmechanismus erstmals bei Pflanzen nachgewiesen.

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Auxin Hormon PIN-Protein Proteinverkehr Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen