Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer Regulationsmechanismus in Pflanzenzellen

30.06.2005


Tübinger berichten in "Nature", wie das Hormon Auxin seinen eigenen Transport beeinflusst



Eine Pflanze muss an ihrem Standort von der ersten Zelle an zurechtkommen: nach unten muss sie Wurzeln bilden, um sich im Boden zu verankern, der Stängel sollte in die entgegengesetzte Richtung wachsen, sich verzweigen, und die Blätter müssen optimal zum Licht ausgerichtet werden. Bei diesen Entwicklungsprozessen führt das Pflanzenhormon Auxin Regie. Es ist innerhalb der pflanzlichen Gewebe ungleich verteilt und gibt auf diese Weise das Signal zur Ausbildung einer Achse oder beim späteren Wachstum zur Bildung und Ausrichtung der Seitenorgane. Dabei nimmt das Hormon über eine ganze Reihe von Schritten Einfluss auf die Aktivität der Gene in den Zellen. Das Auxin haben Tübinger Wissenschaftler vom Zentrum für Molekularbiologie der Pflanzen schon länger untersucht. So haben sie früher bereits entdeckt, dass für den Auxintransport die so genannten PIN-Proteine zuständig sind. Nun sind Tomasz Paciorek, Dr. York-Dieter Stierhof, Jürgen Kleine-Vehn, Prof. Gerd Jürgens, Dr. Niko Geldner und Dr. Jirí Friml vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen in Zusammenarbeit mit Kollegen in Prag, von der RWTH Aachen und der britischen University of Southampton einer weiteren Wirkungsweise des Auxins auf die Spur gekommen: Das Pflanzenhormon nimmt in einer Rückkoppelungsreaktion auch auf seinen eigenen Transport Einfluss. Der dahinter steckende zellbiologische Mechanismus, bei dem das Auxin auf den ständigen Proteinverkehr in der Zelle einwirkt, war in dieser Art bisher nur von tierischen Zellen, nicht aber von Pflanzenzellen bekannt. Wie bereits zuvor - zuletzt im vergangenen Januar - berichten die Tübinger Wissenschaftler auch diesmal in der Fachzeitschrift Nature über ihre neuesten Forschungsergebnisse (Nature, Band 435, Seiten 1251-1256, vom 30. Juni 2005).



Von den PIN-Proteinen, die für den Transport des Auxins zuständig sind, gibt es mehrere unterschiedliche Typen. So findet sich PIN1 zum Beispiel unten, PIN2 oben und PIN3 seitlich in der Zelle. Sie sorgen dafür, dass das Auxin nur in einer Richtung weitertransportiert wird und sich an bestimmten Stellen konzentriert. Dadurch wird nicht nur in der einen Zelle festgelegt, wo oben und wo unten ist. Über den ungleichen Abtransport des Auxins in Nachbarzellen werden auch diese in ihrer Orientierung beeinflusst. So kann sich in vielen kleinen Schritten die Gestalt der Pflanze herausbilden. Die PIN-Proteine sitzen in der Plasmamembran, der äußeren Hülle der Zelle. Die Tübinger Forscher haben festgestellt, dass sie aber nicht unbeweglich sind. Ständig schnüren sich Stücke der flexiblen Zellmembran nach innen ein, lösen sich als runde Vesikel ab und treiben ins Zellinnere zu den Endosomen, kleinen Zellorganen. Endocytose nennen die Wissenschaftler diesen Vorgang. Beim umgekehrten Prozess, der Exocytose, verschmelzen die Vesikel wieder mit der Zellmembran. So herrscht ein reger Verkehr, bei dem die PIN-Proteine zusammen mit weiteren Proteinen ständig zwischen der Zellmembran und den Endosomen kreisen. Das Auxin können die PIN-Proteine allerdings nur weitertransportieren, wenn sie in der Zellmembran sind.

Von tierischen und menschlichen Zellen war bekannt, dass ein solcher ständiger Proteinverkehr innerhalb der Zelle bestimmten Hormonen Regulierungsmöglichkeiten bietet, zum Beispiel beim Insulin. Tatsächlich konnten die Tübinger Wissenschaftler jetzt nachweisen, dass in der Modellpflanze der Genetiker, der Ackerschmalwand (Arabidopsis thaliana), das Hormon Auxin in den ständigen Proteinverkehr eingreift. Es hemmt die Endocytose, sodass die PIN-Proteine länger in der Zellmembran bleiben und das Auxin auf diese Weise seinen eigenen Abtransport fördert. Die Wissenschaftler stellten fest, dass bei der Wachstumsreaktion der Pflanze auf die Schwerkraft (Gravitropismus) der ungleiche Auxintransport mit einem sinkenden PIN-Protein-Wechsel in Endosomen korreliert ist. Andere Pflanzenhormone als das Auxin, wie zum Beispiel Ethylen oder Gibberelline, zeigten in den Experimenten keine Wirkung auf den Proteinverkehr. Die Hemmung der Endocytose durch Auxin haben die Wissenschaftler an Mutanten der Ackerschmalwand untersucht, die im Vergleich zu den Normaltypen eine erhöhte Auxinkonzentration in den Zellen haben. Außerdem haben sie die Zellmembran mit einem fluoreszierenden Farbstoff markiert und konnten so unter dem Mikroskop die Endocytsoeaktivität in der Zelle direkt beobachten.

Damit haben die Forscher nicht nur einen weiteren Schritt im überaus komplizierten Netzwerk der Auxinwirkungen aufgeklärt, sondern auch diesen speziellen Regulationsmechanismus erstmals bei Pflanzen nachgewiesen.

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Auxin Hormon PIN-Protein Proteinverkehr Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie