Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktioniert das "Sesam öffne Dich" für Viren?

23.06.2005


Max-Planck-Materialwissenschaftler haben bestimmt, mit welcher Größe Viren oder Nanopartikel optimal in lebende Zellen eindringen können


Der Lebenszyklus eines (Tier-)virus. a) Anbinden ("Andocken") an die Rezeptormoleküle auf der Zellmembran des Wirtes. b) Eintritt in das Zellinnere c) Biosynthese der viralen Komponenten d) Ausknospung von / Ausschleusen aus der Wirtszelle. (e-i) Einige Viren wie die Herpesviren nutzen diesen Mechanismus des Membrandurchtritts auch innerhalb der Wirtszelle: (e) Knospung / Einstülpung durch die innere Zellmembran, (f) Verschmelzung mit der äußeren Zellmembran (endoplasmatisches Reticulum); (g) Knospung / Einstülpung in den Golgi-Apparat; (h) Verschmelzung mit der gegenüberliegenden Membran; (i) Verschmelzung mit der Zellmembran. (Schematische Darstellung, adaptiert von Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York). Bild: Max-Planck-Gesellschaft


Vorhersage der Dauer des Zelleintritts als Funktion / in Abhängigkeit vom Radius der Nanopartikel. Die Maßeinheiten werden der Einfachheit halber nicht gezeigt. Das Modell sagt den optimalen Radius für die kürzeste "Umwicklungszeit" eines Nanopartikels voraus. Außerdem zeigt es den minimalen sowie den maximalen Partikelradius für den Rezeptor-vermittelten Eintritt in eine Zelle. Bild: Max-Planck-Institut für Metallforschung



Viren können Infektionen mit fatalen Folgen hervorrufen, wie allein die globale Aids-Epidemie zeigt. Diese Erreger sind extrem klein, also eigentlich "Nanopartikel", die in Zellen eindringen. Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart und der Brown University, Providence, USA, haben mit Hilfe eines mathematischen Modells die Größe bestimmt, bei der Viren und andere Nanopartikel besonders effektiv in tierische oder menschliche Zellen eindringen können. Diese beträgt 27 bis 30 Nanometer - ein Wert, der auch durch experimentelle Befunde bestätigt wird. Damit liefert diese Studie die Basis dafür, den Mechanismus des "Rezeptor-vermittelten-Zelleintritts" und damit das Eindringen von Nanopartikeln in Zellen besser verstehen und Wirkstoff- und Gentherapien effizienter und selektiver gestalten zu können (PNAS 10.1073, 22. Juni 2005,).



Viren sind mit einigen zehn bis hundert Nanometern extrem klein und aufgrund des fehlenden Zellkerns keine echten Lebewesen. Vielmehr müssen sie - um überleben und sich vermehren zu können - möglichst schnell in das Innere lebender Zellen gelangen. Viele Viren nutzen dafür den so genannten "Rezeptor-vermittelten-Zelleintritt". Im Zellinneren schließt sich dann ein typischer Lebenszyklus des Virus an (vgl. Abb. 1). Aus experimentellen Untersuchungen weiß man inzwischen, dass Partikel kleiner als 50 Nanometer deutlich schneller in Zellen aufgenommen werden als größere. Die optimale Größe für den Membrandurchtritt liegt bei 25 Nanometern.

Die Erforschung des "Rezeptor-vermittelten-Zelleintritts" von Viren ist wichtig, um besser zu verstehen, wie Nanometer-große Objekte in menschliche oder tierische Zellen eindringen können. Dabei binden Viren oder andere Nanopartikel mit speziellen Bindungsmolekülen (Liganden) an die Rezeptormoleküle auf der äußeren Zellmembran. Die Membran umschließt daraufhin den Virus und schleust ihn nach innen. Dabei entsteht in der Regel eine Proteinhülle aus Clatherin. Doch erst jüngst wurde nachgewiesen, dass Grippe-Viren auch ohne diese Clatherin-Hülle durch die Zellmembran gelangen.

Das jetzt von Prof. Dr. Huajian Gao und Dr. W. Shi, beide Max-Planck-Institut für Metallforschung, und Prof. Dr. L.B. Freund, Brown University, entwickelte mathematische Modell des Rezeptor-vermittelten Zelleintritts ohne Chlatherine-Bildung stützt diese experimentellen Befunde. Das Modell beschreibt, wie eine Zellmembran mit beweglichen Rezeptoren zylinder-/kugelförmige Teilchen mit festen Bindungsmolekülen umwickelt. Die Berechnungen für kugelförmige Teilchen zeigen, dass es einen kleinst- und einen größtmöglichen Radius für den Rezeptor-vermittelten Zelleintritt gibt. Kugelförmige Viren passieren die Zellmembran am schnellsten, werden also am schnellsten umwickelt, wenn ihr Durchmesser lediglich 27 bis 30 Nanometer misst. Die Forscher kommen daher zu dem Schluss, dass sich in der Evolution bestimmte Virengrößen herausgebildet haben, die einen besonders schnellen Eintritt in Zellen ermöglichen.

Die genaue Kenntnis dieser optimalen Größe ist wichtig, um den Eintritt von Nanopartikeln in menschliche Zellen besser zu verstehen. So können die neuen Erkenntnisse dieser Studie nun als Richtlinie dienen, um das Verabreichen von Pharmaka effizienter und selektiver zu machen und die Anwendung zielgenauer Medikamenten-Targeting-Systeme zu optimieren. Zudem kann man mit diesen Kenntnissen auch mögliche Gefährdungen von Umwelt und Gesundheit durch Nanopartikel besser bewerten.

Prof. Huajian Gao | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mf.mpg.de
http://www.mpg.de

Weitere Berichte zu: Nanometer Nanopartikel Virus Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten