Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktioniert das "Sesam öffne Dich" für Viren?

23.06.2005


Max-Planck-Materialwissenschaftler haben bestimmt, mit welcher Größe Viren oder Nanopartikel optimal in lebende Zellen eindringen können


Der Lebenszyklus eines (Tier-)virus. a) Anbinden ("Andocken") an die Rezeptormoleküle auf der Zellmembran des Wirtes. b) Eintritt in das Zellinnere c) Biosynthese der viralen Komponenten d) Ausknospung von / Ausschleusen aus der Wirtszelle. (e-i) Einige Viren wie die Herpesviren nutzen diesen Mechanismus des Membrandurchtritts auch innerhalb der Wirtszelle: (e) Knospung / Einstülpung durch die innere Zellmembran, (f) Verschmelzung mit der äußeren Zellmembran (endoplasmatisches Reticulum); (g) Knospung / Einstülpung in den Golgi-Apparat; (h) Verschmelzung mit der gegenüberliegenden Membran; (i) Verschmelzung mit der Zellmembran. (Schematische Darstellung, adaptiert von Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York). Bild: Max-Planck-Gesellschaft


Vorhersage der Dauer des Zelleintritts als Funktion / in Abhängigkeit vom Radius der Nanopartikel. Die Maßeinheiten werden der Einfachheit halber nicht gezeigt. Das Modell sagt den optimalen Radius für die kürzeste "Umwicklungszeit" eines Nanopartikels voraus. Außerdem zeigt es den minimalen sowie den maximalen Partikelradius für den Rezeptor-vermittelten Eintritt in eine Zelle. Bild: Max-Planck-Institut für Metallforschung



Viren können Infektionen mit fatalen Folgen hervorrufen, wie allein die globale Aids-Epidemie zeigt. Diese Erreger sind extrem klein, also eigentlich "Nanopartikel", die in Zellen eindringen. Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart und der Brown University, Providence, USA, haben mit Hilfe eines mathematischen Modells die Größe bestimmt, bei der Viren und andere Nanopartikel besonders effektiv in tierische oder menschliche Zellen eindringen können. Diese beträgt 27 bis 30 Nanometer - ein Wert, der auch durch experimentelle Befunde bestätigt wird. Damit liefert diese Studie die Basis dafür, den Mechanismus des "Rezeptor-vermittelten-Zelleintritts" und damit das Eindringen von Nanopartikeln in Zellen besser verstehen und Wirkstoff- und Gentherapien effizienter und selektiver gestalten zu können (PNAS 10.1073, 22. Juni 2005,).



Viren sind mit einigen zehn bis hundert Nanometern extrem klein und aufgrund des fehlenden Zellkerns keine echten Lebewesen. Vielmehr müssen sie - um überleben und sich vermehren zu können - möglichst schnell in das Innere lebender Zellen gelangen. Viele Viren nutzen dafür den so genannten "Rezeptor-vermittelten-Zelleintritt". Im Zellinneren schließt sich dann ein typischer Lebenszyklus des Virus an (vgl. Abb. 1). Aus experimentellen Untersuchungen weiß man inzwischen, dass Partikel kleiner als 50 Nanometer deutlich schneller in Zellen aufgenommen werden als größere. Die optimale Größe für den Membrandurchtritt liegt bei 25 Nanometern.

Die Erforschung des "Rezeptor-vermittelten-Zelleintritts" von Viren ist wichtig, um besser zu verstehen, wie Nanometer-große Objekte in menschliche oder tierische Zellen eindringen können. Dabei binden Viren oder andere Nanopartikel mit speziellen Bindungsmolekülen (Liganden) an die Rezeptormoleküle auf der äußeren Zellmembran. Die Membran umschließt daraufhin den Virus und schleust ihn nach innen. Dabei entsteht in der Regel eine Proteinhülle aus Clatherin. Doch erst jüngst wurde nachgewiesen, dass Grippe-Viren auch ohne diese Clatherin-Hülle durch die Zellmembran gelangen.

Das jetzt von Prof. Dr. Huajian Gao und Dr. W. Shi, beide Max-Planck-Institut für Metallforschung, und Prof. Dr. L.B. Freund, Brown University, entwickelte mathematische Modell des Rezeptor-vermittelten Zelleintritts ohne Chlatherine-Bildung stützt diese experimentellen Befunde. Das Modell beschreibt, wie eine Zellmembran mit beweglichen Rezeptoren zylinder-/kugelförmige Teilchen mit festen Bindungsmolekülen umwickelt. Die Berechnungen für kugelförmige Teilchen zeigen, dass es einen kleinst- und einen größtmöglichen Radius für den Rezeptor-vermittelten Zelleintritt gibt. Kugelförmige Viren passieren die Zellmembran am schnellsten, werden also am schnellsten umwickelt, wenn ihr Durchmesser lediglich 27 bis 30 Nanometer misst. Die Forscher kommen daher zu dem Schluss, dass sich in der Evolution bestimmte Virengrößen herausgebildet haben, die einen besonders schnellen Eintritt in Zellen ermöglichen.

Die genaue Kenntnis dieser optimalen Größe ist wichtig, um den Eintritt von Nanopartikeln in menschliche Zellen besser zu verstehen. So können die neuen Erkenntnisse dieser Studie nun als Richtlinie dienen, um das Verabreichen von Pharmaka effizienter und selektiver zu machen und die Anwendung zielgenauer Medikamenten-Targeting-Systeme zu optimieren. Zudem kann man mit diesen Kenntnissen auch mögliche Gefährdungen von Umwelt und Gesundheit durch Nanopartikel besser bewerten.

Prof. Huajian Gao | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mf.mpg.de
http://www.mpg.de

Weitere Berichte zu: Nanometer Nanopartikel Virus Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks
17.02.2017 | Max-Planck-Institut für molekulare Biomedizin, Münster

nachricht Der Entropie auf der Spur
17.02.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung