Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorgänge in Miniporen und innere Ordnung von Riesenmolekülen

24.05.2005


NMR-Experte Gerd Buntkowsky ist neuer Professor für Physikalische Chemie an der Universität Jena


Die NMR-Spektroskopie ist Ausgangspunkt für die verschiedenen Forschungsaktivitäten von Prof. Dr. Gerd Buntkowsky, dem neuen Professor für Physikalische Chemie an der Universität Jena. NMR steht für Nuclear Magnetic Resonance, zu deutsch Kernspinresonanz. Bei diesem Verfahren wird das Verhalten des Kernspins, einer schnellen Drehung des Atomkerns um seine Achse, in starken gleichmäßigen Magnetfeldern untersucht. Die NMR ist heute eine der wichtigsten Methoden zur Aufklärung der Struktur vorzugsweise organischer Stoffe. "Wir gebrauchen NMR-Spektroskopie u. a., um so genannte weiche Materie zu untersuchen", berichtet Buntkowsky. Darunter versteht man Feststoffe, deren Moleküle nicht hochgeordnet in einem Kristallgitter vorliegen. Typische Vertreter sind Biopolymere wie Eiweiße oder ihre katalytisch aktiven Vettern, die Enzyme. Sie bestehen aus vielen verschiedenen Grundbausteinen, die vielfältige Möglichkeiten haben, sich zu organisieren.

"Ihre geometrische Struktur entsteht durch das Wechselspiel von wasserabweisenden oder wasserliebenden Eigenschaften der Bausteine, ihren sterischen Wechselwirkungen, Ladungsverteilungen und nicht zuletzt Wasserstoffbrückenbindungen", erklärt der Physiker, der von der Freien Universität Berlin an die Friedrich-Schiller-Universität wechselte. Momentan leitet er in diesem Bereich Projekte in einem Sonderforschungsbereich (SFB) zu Protein-Kofaktor-Wechselwirkungen und einem Graduiertenkolleg zu Wasserstoffbrücken. "Wir wollen die Aufklärung der molekularen Wirkmechanismen einiger komplexer Biomoleküle voranbringen, indem wir mit NMR die funktionellen Wasserstoffbrückenbindungen untersuchen", so Buntkowsky. Diese Untersuchungen stehen im engen Zusammenhang mit den Zielen des Jenaer SFBs "Metallvermittelte Reaktionen nach dem Vorbild der Natur".


Ausgefeilte NMR-Techniken benötigt Buntkowsky jedoch auch, um grundlegende Fragen zur Dynamik kondensierter Materie zu beantworten. So untersucht er beispielsweise, wie sich Gastmoleküle, z. B. Wasser, in den Poren von Silikatmaterialien verhalten. Der Porendurchmesser beträgt einen Nanometer. Legt man die typische Größe eines Wassermoleküls von etwa 0,1 Nanometer zugrunde, bedeutet das, dass nur einige Dutzend Moleküle quer in die Pore passen. Auch hier bilden sich wieder Wasserstoffbrückenbindungen aus, die sich mit NMR-Technicken untersuchen lassen. "Solche Experimente tragen zum Verständnis der Wasser-Oberflächenwechselwirkung auf molekularer Ebene bei", erklärt Buntkowsky. Die porösen Silikatmaterialien, an denen er forscht, sind zudem für katalytische Anwendungen interessant, denn sie haben riesige innere Oberflächen, die sich relativ leicht chemisch modifizieren lassen. Zum Vergleich: Drei zuckerwürfelgroße Teile haben die innere Oberfläche eines Fußballfeldes. Mit seinen Forschungen bietet der neue Physikochemiker der Uni Jena Ansatzpunkte für Physik-Theoretiker, Materialwissenschaftler aber auch Biologen und Mediziner.

Im Westerwald aufgewachsen studierte Gerd Buntkowsky Physik an der Freien Universität Berlin. Dort promovierte er 1991 über optische Kernspinpolarisation und Multiquanten-NMR an organischen Festkörpern und betrieb danach strukturelle und dynamische Studien mit dipolarer und quadrupolarer Festkörper-NMR, die in seine Habilitation (2000) einflossen. Ein Auslandsaufenthalt führte ihn an das National Institute of Health in Bethesda, USA. Dort begann er mit NMR-Methoden die Struktur von beta-Amyloidpeptiden zu untersuchen. Die langen Eiweißketten "verkleben" zu beta-Faltblattstrukturen und bilden in den Hirnen von Alzheimerpatienten spezifische Plaques. Auch diese Alzheimer-Forschungen will Buntkowsky nun in Jena fortführen.

Kontakt:
Prof. Dr. Gerd Buntkowsky
Institut für Physikalische Chemie der Universität Jena
Helmholtzweg 4, 07743 Jena
Tel.: 03641 / 948310
E-Mail: gerd.buntkowsky@uni-jena.de

Hintergrundinformation zur NMR-Spektroskopie:

NMR steht für Nuclear Magnetic Resonance, zu deutsch Kernmagnetische Resonanz oder Kernspinresonanz. Die NMR-Spektroskopie beruht auf dem Phänomen der Kernspinresonanz in starken, homogenen Magnetfeldern. Der Eigendrehimpuls der Atomkerne, Spin genannt, hat zwei energetisch unterschiedliche Orientierungsmöglichkeiten in diesem Magnetfeld. Durch Einstrahlung von passenden Energiequanten können Spins in den höherwertigen Energiezustand "umklappen". Dabei wird eine Radiowelle mit der entsprechenden Frequenz absorbiert. Dies wird messtechnisch erfasst. Die Atome können chemisch aber unterschiedlich gebunden sein, so dass die Änderung der Elektronendichte zu einer Abschirmung bzw. Freilegung des Atomkerns führt. Das bewirkt, dass hier eine geringere bzw. höhere effektive Feldstärke wirkt. Hiermit geht auch eine Verschiebung der Resonanzfrequenz einher. Auf diesem Prinzip und dem Phänomen, dass einige Atomkerne miteinander in Kopplung treten, beruht die Strukturbestimmung mittels NMR-Techniken. Die Methode ist eng verwandt mit der in der Medizin eingesetzten Kernspintomographie.

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften