Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinfaltung und -aktivierung: Hinweise auf Entstehung von Krebs und Alzheimer

16.07.2001




  • Proteine bei der Arbeit beobachten
  • Hinweise auf Entstehung von Krebs und Alzheimer
  • RUB-Forscher sehen Proteinfaltung und -aktivierung

Mit der Fourier Transform Infrarot (FTIR) Differenzspektroskopie ist es der Arbeitsgruppe des Bochumer Biophysikers Prof. Dr. Klaus Gerwert (Fakultät für Biologie der RUB) gelungen, die Arbeit von Proteinen in Echtzeit und atomarer Auflösung zu beobachten. So konnten die Forscher z. B. den Vorgang ihrer Faltung dokumentieren. Eine fehlerhafte Proteinfaltung scheint Auslöser von so genannten Amyloiderkrankungen wie Alzheimer und der Creutzfeld-Jakob-Krankheit zu sein. Auch für die Entwicklung neuer Krebsmedikamente liefert die Methode vielversprechende Erkenntnisse. Sie macht die Aktivierung des Ras-Proteins sichtbar, das in mutierter Form krebserregend wirkt.

Kompletter Film von der Proteinarbeit

Nachdem das menschliche Genom entschlüsselt ist, rückt die Untersuchung der Struktur und der Funktion von Proteinen in den Fokus der Bio-Wissenschaftler. Die Auflösung der dreidimensionalen Raumstruktur von kristallisierten Proteinen ist dabei beinahe Routine für Röntgenstrukturanalytiker. Allerdings liefert die Röntgenstrukturanalyse nur Bilder eines einzelnen "eingefrorenen" Proteinzustands, aber keinen kompletten Film über die Arbeitsweise von Proteinen. Das Verständnis ihrer Arbeitsweise ist jedoch eine wesentliche Voraussetzung für biotechnologische Anwendungen und rationale Medikamentenentwicklung.

Micromischzelle regt Proteine an

Der Bochumer Arbeitsgruppe ist jetzt ein entscheidender Durchbruch gelungen, der in zwei kürzlich erschienenen Arbeiten in den international renommierten "Proceedings of the National Academy of Sciences of the USA" (PNAS) beschrieben ist. Mit der zeitaufgelösten FTIR Differenzspektroskopie lassen sich Proteine bei der Arbeit in Echtzeit mit atomarer Auflösung beobachten. Handelt es sich dabei um Photorezeptoren, können die Proteine direkt mit einem kurzen, gepulsten Laserblitz gezielt angeregt werden. Eine solche Untersuchung ist im Frühjahr in nature structural biology (s.u.) beschrieben und mit einem news and views Kommentar gewürdigt worden. Die meisten, insbesondere medizinisch relevanten Proteine tragen allerdings keine solche lichtaktivierbare "chromophore" Gruppe. Prof. Gerwert entwickelte daher zusammen mit Bob Austin, Princeton, USA, mit nanotechnologischen Methoden eine Micromischzelle. In ihr kann das Protein mit einer Startersubstanz in weniger als einer Millisekunde gemischt werden. Die durch Mischung angeregte Proteinreaktion können die Wissenschaftler dann im IR zeitaufgelöst untersuchen.

Zwischenstufe beschleunigt die Faltung

Mit diesem neuen Ansatz konnten sie zum ersten Mal eine beta nach alpha-Proteinfaltungsreaktion beobachten. Die umgekehrte Umfaltung von alpha nach beta scheint die so genannten Amyloiderkrankungen wie Creutzfeld-Jakob und Alzheimer auszulösen. Bei der Studie entdeckten die Forscher erstmals eine kompakte Zwischenstufe. Mit diesem Ergebnis können sie den ungewöhnlich schnellen Faltungsübergang erklären: Das Protein bleibt für den Übergang kompakt und muss sich nicht entfalten. Zurzeit wird in Gerwerts Labor der alpha nach beta-Übergang von Prionen untersucht.

Mutiertes Ras wirkt krebserregend

In der zweiten PNAS Arbeit, die in dieser Woche erschienen ist, untersuchte die Arbeitsgruppe in Zusammenarbeit mit Prof. Fred Wittinghofer vom Max Planck Institut für Molekulare Physiologie in Dortmund die GAP (G-aktivierendes Protein) Aktivierung von sogenannten Ras Proteinen. Die GTP (Guanosintriphosphat) bindenden Ras Proteine spielen eine zentrale Rolle in der Signalübermittlung. Sie katalysieren die Hydrolyse von GTP zu GDP (Guanosindiphosphat) und Pi (anorganischer Phosphatrest). Bestimmte Mutanten von Ras können von GAP nicht mehr aktiviert werden und wirken dann krebserregend, weil der signalweiterleitende GTP Zustand angereichert wird.

Entdeckung hilft Medikamente entwickeln

Die Aktivierung des Ras Proteins durch GAP konnte dank der FTIR Spektroskopie zum ersten Mal in Echtzeit mit atomarer Auflösung untersucht werden. Dabei zeigte sich ein Zwischenstadium, in dem das vom Ras freigesetzte anorganische Phosphat sich nicht direkt löst. Überraschenderweise bleibt es an den RasGAP Komplex gebunden, bevor es im geschwindigkeitsbesimmenden Schritt vom Proteinkomplex freigesetzt wird. Aus den Ergebnissen lassen sich neue mechanistische Vorstellungen ableiten, die bei der Entwicklung neuer Krebsmedikamente helfen. Mit diesem neuen "assay" können Wirkstoffe jetzt gezielt daraufhin untersucht werden, ob sie krebserregende Ras Mutanten wieder aktivieren können.

Weitere Informationen

Prof. Dr. Klaus Gerwert, Fakultät für Biologie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24462, Fax: 0234/32-14238, E-Mail: gerwert@bph.ruhr-uni-bochum.de,
Dr. Mathias Lübben, Fakultät für Biologie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24465, Fax: 0234/32-14626, E-Mail: luebben@bph.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.pnas.org/cgi/reprint/98/14/7754.pdf
http://www.pnas.org/cgi/reprint/98/12/6646.pdf
http://www.bph.ruhr-uni-bochum.de/

Weitere Berichte zu: Alzheimer Protein Proteinfaltung Ras

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Korallenthermometer muss neu justiert werden
23.09.2016 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt
23.09.2016 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Im Focus: Mit OLED Mikrodisplays in Datenbrillen zur verbesserten Mensch-Maschine-Interaktion

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP arbeitet seit Jahren an verschiedenen Entwicklungen zu OLED-Mikrodisplays, die auf organischen Halbleitern basieren. Durch die Integration einer Bildsensorfunktion direkt im Mikrodisplay, lässt sich u.a. die Augenbewegung in Datenbrillen aufnehmen und zur Steuerung von Display-Inhalten nutzen. Das verbesserte Konzept wird erstmals auf der Augmented World Expo Europe (AWE), vom 18. – 19. Oktober 2016, in Berlin, Stand B25 vorgestellt.

„Augmented Reality“ (erweiterte Realität) und „Wearable Displays“ (tragbare Displays) sind Schlagworte, denen man mittlerweile fast täglich begegnet. Beide...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Künstliche Intelligenz ermöglicht die Entdeckung neuer Materialien

Mit Methoden der künstlichen Intelligenz haben Chemiker der Universität Basel die Eigenschaften von rund 2 Millionen Kristallen berechnet, die aus vier verschiedenen chemischen Elementen zusammengesetzt sind. Dabei konnten die Forscher 90 bisher unbekannte Kristalle identifizieren, die thermodynamisch stabil sind und als neuartige Werkstoffe in Betracht kommen. Das berichten sie in der Fachzeitschrift «Physical Review Letters».

Elpasolith ist ein glasiges, transparentes, glänzendes und weiches Mineral mit kubischer Kristallstruktur. Erstmals entdeckt im El Paso County (USA), kann man...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einsteins Geburtsstadt wird für eine Woche Hauptstadt der Physik

23.09.2016 | Veranstaltungen

Industrie und Wissenschaft diskutieren künftigen Mobilfunk-Standard 5G auf Tagung in Kassel

23.09.2016 | Veranstaltungen

Fachgespräch Feste Biomasse diskutiert Fragen zum Thema "Qualitätshackschnitzel"

23.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Korallenthermometer muss neu justiert werden

23.09.2016 | Biowissenschaften Chemie

Doppel-Infektion macht Erreger aggressiver

23.09.2016 | Biowissenschaften Chemie

Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

23.09.2016 | Biowissenschaften Chemie