Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoskopische Lämpchen

28.01.2005


Lipidbeschichtete Nanokristalle als lokale Lichtquellen für die Fluoreszenzanregung spezifisch gebundener Proteine



Die Miniaturisierung hält Einzug in Diagnostik und (Bio-)Analytik. Verfahren im Minimaßstab, wie DNA-Chips und das Labor im Kreditkartenformat, sind längst in der Anwendung. Schweizer Forscher haben nun eine Art Lampe für nanoskopische Methoden entwickelt.



Des Pudels Kern sind Nanokristalle aus halbleitenden Materialien: Das Forscherteam um Horst Vogel an der Eidgenösischen Technischen Hochschule in Lausanne (EPFL) wählte grün fluoreszierende Kriställchen aus Cadmiumselenid, die sie in eine dünne Schicht aus Lipid-Molekülen einhüllten, wie sie auch in Zellmembranen vorkommen. Die Lipidschicht schützt die Nanokristalle vor äußeren Einflüssen und macht sie wasserlöslich, ohne ihre Fluoreszenz zu unterbinden. Im Gegensatz zu anderen Beschichtungen haben die Lipidschichten einen besonderen Vorteil: Sie lassen sich auf einfache Weise mit biochemischen Funktionen ausstatten.

Um die Leistungsfähigkeit ihres Konzepts zu testen, stattete das EPFL-Team die beschichteten Leuchtkristalle mit zwei verschiedenen Sorten molekularer "Haken" aus, die ganz spezifisch nur an je einen Typ von "Öse" binden. Die Wissenschaftler "bedruckten" ein Glasplättchen mit einem zweidimensionalen Mikromuster aus speziellen Proteinkomplexen, die die passenden Ösen (das Protein Streptavidin) für den ersten Hakentyp (das Vitamin Biotin) tragen. Die Leuchtkristalle binden dann selektiv an dieses vorgegebene Muster. "Unsere winzigen Lämpchen können also relativ einfach mit Mikrometer-Präzision in definierte Strukturen angeordnet werden," sagt Vogel, "so wie sie etwa für eine Analytik mit DNA- oder Protein-Chips gebraucht wird." Nun kommt der zweite Haken ins Spiel (Nitrilotriessigsäure), er könnte später als Angel für markierte Analytmoleküle dienen. Als Beispielsubstanz gaben die Forscher ein rot fluoreszierendes Protein, das die passende Öse (Hexahistidin) trägt, auf den Glasträger. Sofort heftet sich das Protein an die Kristalle. Werden die Leuchtkristalle nun mit Licht einer bestimmten Wellenlänge bestrahlt, kommen sie in einen angeregten Zustand. Normalerweise würden sie diese Energie in Form von grüner Fluoreszenz wieder abstrahlen. Stattdessen geben die "Nanolämpchen" ihre "Energiepakete" nun aber strahlungslos direkt an die angeknüpften Proteine weiter. Die Pakete sind genau das, was die Proteine brauchen, um ihrerseits angeregt zu werden.

Beim Zurückfallen in den Grundzustand strahlen sie die Energie in Form einer roten Fluoreszenz ab, die detektiert werden kann. Der Clou: Die strahlungslose Energieübertragung von einem Nanolämpchen auf die Proteine funktioniert nur, wenn ihr Abstand nicht mehr als 10 nm beträgt. "So werden ausschließlich spezifisch gebundene Proteine zum Fluoreszieren gebracht," sagt Vogel, "eine derartig hohe Sensitivität kann mit konventionellen Lichtquellen nicht erreicht werden."

Kontakt:

Prof. H. Vogel
Laboratoire de Chimie Physique des Polymères et Membranes
Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne Schweiz
Tel.: (+41) 21--693--3155
Fax: (+41) 21--693--6190
E-mail: horst.vogel@epfl.ch

Angewandte Chemie Presseinformation Nr. 07/2005

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Fluoreszenz Leuchtkristalle Nanokristalle Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie