Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erleuchtetes Gehirn

06.07.2001


Wissenschaftlern am Heidelberger Max-Planck-Institut für medizinische Forschung gelingt direkte Beobachtung und Regulierung neuronaler Verschaltungen zwischen Gehirnzellen

Eine Wissenschaftlergruppe um Rolf Sprengel und Volker Mack am Max-Planck-Institut für medizinische Forschung in Heidelberg ist es gelungen, die synaptische Plastizität von Gehirnzellen im Hippocampus von Mäusen sichtbar zu machen und durch die Gabe von Antibiotika zu regulieren (Science, 29. Juni 2001). Dieser experimentelle Ansatz eröffnet neue Möglichkeiten, um die Kluft zwischen der Kenntnis molekularer Vorgänge in einzelnen Nervenzellen und dem Verständnis von Lern- und Gedächtnisleistungen des ganzen Gehirns zu überbrücken.

Die moderne Neurobiologie fragt heute nach den molekularen und zellulären Mechanismen, die unserem Gehirn seine so genannte Plastizität (griech.: plastokos = zum Formen geeignet) geben und es so anpassungsfähig machen. Diese Mechanismen bestimmen - entwicklungsabhängig - die Verknüpfung der Nervenzellen zu spezialisierten neuronalen Netzen, wie dem sensorischen oder dem visuellen System. Sie sind die Grundlage von Lern- und Gedächtnisvorgängen im Gehirn. Sie ermöglichen es, motorische, sensorische oder kognitive Störungen, wie sie zum Beispiel nach einem Schlaganfall eintreten, zu korrigieren.

Diese plastischen Veränderungen finden vorrangig an Synapsen statt, den Schaltstellen für die Kommunikation zwischen Nervenzellen. Eine Nervenzelle kann bis zu 50.000 derartige Strukturen ausbilden. Jede Synapse hat eine präsynaptische Komponente, vergleichbar einem Sender, und eine postsynaptische Struktur, ein Empfangsstation. Informationen werden von einer Nervenzelle zur anderen über die Ausschüttung von chemischen Botenstoffen (Neurotransmittern) weitergegeben. Diese Signalübertragung ist in vielen Nervenverknüpfungen (Synapsen) nicht statisch, sondern kann - abhängig von ihrem Gebrauch - optimiert werden, was man dann als ‚synaptische Plastizität’ bezeichnet. So kann die chemische Neurotransmission entweder dadurch verbessert werden, dass die sendende Nervenzelle eine größere Menge Botenstoff ausschüttet, oder durch eine größere Zahl von Empfängerstrukturen (Rezeptorkanäle) auf der nachgeschalteten Nervenzelle. Bei den molekularen Mechanismen, die der Erinnerung und dem Lernen zugrunde liegen, spielen durch Glutamat gesteuerte Ionenkanäle eine zentrale Rolle.

Den Wissenschaftlern aus dem Max-Planck-Institut für medizinische Forschung in Heidelberg ist es nun gelungen, in Mäusen einen wichtigen Glutamat-gesteuerten Ionenkanal gegen seine grünfluoreszierende Variante auszutauschen. Die Wissenschaftler stellten fest, dass der Ionenkanal auch mit dem eingebauten grünfluoreszierenden Protein (GFP) im zentralen Nervensystem der Mäuse einwandfrei arbeitete. Darüber hinaus fanden die Heidelberger Wissenschaftler einen einfachen Weg, um die Funktion dieses Ionenkanals zu regulieren - über die Zugabe des Antibiotikums Doxyzyclin im Trinkwasser (s. Abbildung, S. 3).

Damit haben die Heidelberger Wissenschaftler zwei wichtige Ergebnisse erreicht: Durch den Einbau des grünfluoreszierenden Proteins in den Ionenkanal können jetzt Lokalisierung, Funktion und die Interaktionen dieser Kanäle direkt beobachtet werden. Mit der Zugabe des Antibiotikums zum Trinkwasser haben sie zudem einen Weg gefunden, um eine der wichtigsten Eigenschaften neuronaler Verschaltungen im Hippocampus, die aktivitätsabhängige Optimierung der Reizweitergabe, regulieren zu können.

Mit vergleichenden Untersuchungen von Mäusen, die mit oder ohne das Antibiotikum Doxyzyclin aufgewachsen sind, wollen die Wissenschaftler in der nächsten Zeit herausfinden, bei welchen Lernvorgängen diese Form der synaptischen Plastizität in den verschiedenen Bereichen des Hippocampus eine Rolle spielt (vgl. dazu auch die Presse-Information PRI B3/99 (24) "Diskussion über Lernvorgänge im Gehirn wieder offen").

In Nervenzellen des Vorderhirns einer Maus wird die Bildung des fluoreszierenden Glutamat-Rezeptorproteins (GFP-GluR-A) durch einen Transkriptionsfaktor (tTA) ausgelöst (A). Das Rezeptorprotein lagert sich mit anderen Untereinheiten zusammen (B) und bildet einen Glutamatrezeptorkanal (AMPA-Typ) in der Membran der Nervenzellen (C). Der durch das grünfluoreszierende Protein markierte Rezeptorkanal (D) befindet sich in den Synapsen neben anderen Glutamatrezeptoren (NMDA-Typ).

Der Hippocampus der Mäuse erscheint nach Bestrahlung mit blauem Licht grün (E). Dank der fluoreszierenden Grünfärbung sind im Schnittpräparat Zellkörper und Zellfortsätze (Dendritenbäume) gut zu erkennen (F). Bei hoher Auflösung (G) sind sogar die Spitzen der Dornfortsätze (Synapsen) und der Schaft eines Dendriten (H) zu sehen.


Abbildung: Max-Planck-Institut für medizinische Forschung / Sprengel

Dr. Rolf Sprengel | Referat für Presse- und Öffentli
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: Antibiotikum Hippocampus Ionenkanal Mäuse Nervenzelle Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise