Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radikale Stoffwechselreaktionen

24.11.2004


Max-Planck-Biochemiker enthüllen Funktion chemischer Radikale bei Stoffwechselreaktionen zur Energiegewinnung


Struktur des Eisen-Schwefel-Enzyms 4-Hydroxybutyryl-CoA-Dehydratase (4-BUDH). Dieses besteht aus vier Untereinheiten, wobei jede davon ein aktives Zentrum mit einem Eisen-Schwefel-Cluster (bestehend aus vier Schwefel- und vier Eisen-Atomen) und Flavin enthält.
Bild: Max-Planck-Institut für Biochemie



Zusätzlich zu den bekannten Oxidationen und Reduktionen, die Organismen zur Energiegewinnung bei ihren Stoffwechselwegen einsetzen, haben nun Wissenschaftler aus Martinsried und Marburg die Möglichkeit der Radikal-Bildung in Wasserabspaltungen erklärt. In der Zeitschrift Proceedings of the National Academy of Sciences of America (PNAS) präsentieren die Forscher erstmalig die Struktur einer radikal-abhängigen Dehydratase mit Eisen-Schwefel-Clustern und Flavinen (4-Hydroxybutyryl-CoA Dehydratase). Sie können damit einen Stoffwechselweg mit Radikalen erklären (PNAS, 2. November 2004).



Ohne Eisen-Schwefelproteine können Lebewesen nicht existieren. Bei allen wichtigen Stoffwechselprozessen; wie z. B. der Atmung der Tiere, der Photosynthese bei Pflanzen oder der Stickstofffixierung der Knöllchenbakterien in Erbsenwurzeln; sind Energietransportketten beteiligt, die nur mit diesen Proteinen funktionieren. Die Proteinmoleküle enthalten außer den organischen Aminosäuren anorganische Bestandteile, die aus Eisen-Schwefel-Verbindungen - so genannten Eisen-Schwefel-Clustern - bestehen. Sie kommen in einer Vielzahl unterschiedlicher Strukturen vor; je nach Anzahl der beteiligten Eisen- und Schwefelatome werden lineare, kubische oder komplexere Reaktionszentren gebildet, um die sich das übrige Protein anordnet.

Seit rund 40 Jahren sind die biologischen Eisen-Schwefel-Cluster bekannt, die auch an Katalyse-Prozessen beteiligt sein können, in denen die Abspaltung von Wasser erfolgt. Ein wichtiges Beispiel ist die Aconitase, die im Zitronensäurezyklus die Umwandlung von Zitrat zu Isozitrat durch Abspaltung und Wiederanlagerung von Wasser ermöglicht. Während diese Reaktion chemisch einfach ist, muss das Substrat bei der Wasserabspaltung aus 4-Hydroxybutyryl-CoA erst durch eine radikalische Einelektronen-Oxidation in die reaktionsbereite Form überführt werden.

Eisen-Schwefel-Cluster kommen nicht nur in aeroben Prozessen (unter Anwesenheit von Sauerstoff) vor, sondern spielen besonders im Stoffwechsel anaerober Organismen Schlüsselrollen. Das Fehlen von Sauerstoff in der Uratmosphäre und das reichliche Vorhandensein von Eisen und Schwefelwasserstoff führten zu der Hypothese, dass einfache Eisen-Schwefel-Verbindungen (Pyrite) zum Ursprung des Lebens beigetragen haben könnten. Die Wissenschaftler konzentrieren sich in ihrer Forschung deshalb auf die Reaktionsmechanismen dieser Verbindungen unter Abwesenheit von Sauerstoff.

Die Bakterienfamilie der Clostridien, zu denen das Wundstarrkrampf erregende Clostridium tetani gehört, kann mit Unterstützung von Eisen-Schwefel-Proteinen bestimmte Aminosäuren - die Bausteine von Proteinen - zur Energiegewinnung nutzen. Clostridien können nur in sauerstofffreier Umgebung als Bodenbakterien oder auch im Verdauungstrakt von Säugetieren überleben. Clostridium aminobutyricum ist Spezialist für die Energiegewinnung aus 4-Aminobuttersäure, die im Nervensystem die Weiterleitung von Signalen zwischen Nervenzellen hemmt.

Clostridium aminobutyricum benötigt für die Vergärung von 4-Aminobuttersäure das Eisen-Schwefel-Enzym 4-Hydroxybutyryl-CoA-Dehydratase (4-BUDH). Aus den Kristallen des Enzyms konnten die Wissenschaftler der Abteilung Strukturforschung am Max-Planck-Institut für Biochemie in Martinsried - in enger Kooperation mit dem Laboratorium für Mikrobiologie der Universität Marburg - durch Röntgenstrukturanalyse die dreidimensionale Struktur des Proteins rekonstruieren.

Die Strukturforscher haben eindeutig gezeigt, dass 4-BUDH aus vier Untereinheiten besteht, wobei jede der Untereinheiten jeweils ein aktives Zentrum mit einem Eisen-Schwefel-Cluster (bestehend aus vier Schwefel- und vier Eisen-Atomen) und Flavin enthält. Während Eisen-Schwefel-Cluster normalerweise nur durch die Schwefelatome der Aminosäure Cystein mit dem Protein verbunden sind, verankern in der 4-BUDH drei Cysteine sowie die Aminosäure Histidin den Cluster. Ein Vergleich der Faltung der Proteinstruktur mit anderen bekannten Strukturen offenbarte eine Verwandtschaft von 4-BUDH zum Enzym Acyl-CoA Dehydrogenase (MCAD), das im Fettsäure-Stoffwechsel des Menschen eine wichtige Rolle spielt, jedoch keine Eisen-Schwefel-Verbindungen besitzt.

Berta Martins, Holger Dobbek (jetzt Juniorprofessor an der Universität Bayreuth), und Albrecht Messerschmidt aus der Abteilung Strukturforschung (Prof. Robert Huber) des Martinsrieder Instituts und Irfan Cinkaya (jetzt Mitarbeiter bei Chiron Vaccines in Marburg) und Wolfgang Buckel an der Universität Marburg, konnten aus der ausgeprägten Ähnlichkeit der beiden Enzyme, 4-BUDH und MCAD, Rückschlüsse auf die Funktion der Enzyme und den genauen Stoffwechselweg schließen: Beide Enzyme besitzen so genannte Flavin-Strukturen, die an der Umsetzung ihrer jeweiligen Substrate (bei 4-BUDH ist es 4-Hydroxybutyryl-CoA) beteiligt sind. Die Wissenschaftler vermuten, dass - im Gegensatz zu bisherigen Theorien - MCAD ebenso wie 4-BUDH die Reaktion über Flavinradikale katalysiert. Zusätzlich wird von der 4-BUDH das Eisen-Schwefel-Cluster zur Wasserabspaltung benötigt.

Weil beide Enzyme ähnliche Struktur und Funktionsweisen haben, gehen die Wissenschaftler von einer gemeinsamen Ursprungsform in der Evolution aus. Jedoch nur 4-BUDH besitzt Eisen-Schwefel-Verbindungen. Daraus kann geschlossen werden, dass die Natur die stabile Struktur des Vorgängers beider Enzyme erhalten hat und eine Evolution durch kleine Veränderungen an einem bestehenden katalytischen System stattfand. Die Strukturaufklärung der 4-Hydroxybutyryl-CoA Dehydratase (4-BUDH) hat jetzt völlig neue Erkenntnisse der Beteiligung von Radikalen bei Stoffwechselreaktionen zur Energiegewinnung geliefert, denn nun können sich die Wissenschaftler die genauen Reaktionswege erklären. Sie eröffnen damit auch für andere Stoffwechselreaktionen, an denen Flavin und Eisen-Schwefel-Verbindungen beteiligt sind, wesentliche Details, die zum weiteren Verständnis des Mechanismus dieser Enzymreaktionen notwendig sind.

Originalveröffentlichung:

Berta M. Martins, Holger Dobbek, Irfan Cinkaya, Wolfgang Buckel, and Albrecht Messerschmidt, "Crystal structure of 4-hydroxybutyryl-CoA dehydratase: Radical catalysis involving a [4Fe- 4S] cluster and flavin", PNAS, November 2, 2004, vol. 101, no. 44, 15645-15649

Weitere Informationen erhalten Sie von:

Prof. Dr. Albrecht Messerschmidt
Max-Planck-Institut für Biochemie, Martinsried
Tel.: 089 8578-2669
E-Mail: messersc@biochem.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz