Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radikale Stoffwechselreaktionen

24.11.2004


Max-Planck-Biochemiker enthüllen Funktion chemischer Radikale bei Stoffwechselreaktionen zur Energiegewinnung


Struktur des Eisen-Schwefel-Enzyms 4-Hydroxybutyryl-CoA-Dehydratase (4-BUDH). Dieses besteht aus vier Untereinheiten, wobei jede davon ein aktives Zentrum mit einem Eisen-Schwefel-Cluster (bestehend aus vier Schwefel- und vier Eisen-Atomen) und Flavin enthält.
Bild: Max-Planck-Institut für Biochemie



Zusätzlich zu den bekannten Oxidationen und Reduktionen, die Organismen zur Energiegewinnung bei ihren Stoffwechselwegen einsetzen, haben nun Wissenschaftler aus Martinsried und Marburg die Möglichkeit der Radikal-Bildung in Wasserabspaltungen erklärt. In der Zeitschrift Proceedings of the National Academy of Sciences of America (PNAS) präsentieren die Forscher erstmalig die Struktur einer radikal-abhängigen Dehydratase mit Eisen-Schwefel-Clustern und Flavinen (4-Hydroxybutyryl-CoA Dehydratase). Sie können damit einen Stoffwechselweg mit Radikalen erklären (PNAS, 2. November 2004).



Ohne Eisen-Schwefelproteine können Lebewesen nicht existieren. Bei allen wichtigen Stoffwechselprozessen; wie z. B. der Atmung der Tiere, der Photosynthese bei Pflanzen oder der Stickstofffixierung der Knöllchenbakterien in Erbsenwurzeln; sind Energietransportketten beteiligt, die nur mit diesen Proteinen funktionieren. Die Proteinmoleküle enthalten außer den organischen Aminosäuren anorganische Bestandteile, die aus Eisen-Schwefel-Verbindungen - so genannten Eisen-Schwefel-Clustern - bestehen. Sie kommen in einer Vielzahl unterschiedlicher Strukturen vor; je nach Anzahl der beteiligten Eisen- und Schwefelatome werden lineare, kubische oder komplexere Reaktionszentren gebildet, um die sich das übrige Protein anordnet.

Seit rund 40 Jahren sind die biologischen Eisen-Schwefel-Cluster bekannt, die auch an Katalyse-Prozessen beteiligt sein können, in denen die Abspaltung von Wasser erfolgt. Ein wichtiges Beispiel ist die Aconitase, die im Zitronensäurezyklus die Umwandlung von Zitrat zu Isozitrat durch Abspaltung und Wiederanlagerung von Wasser ermöglicht. Während diese Reaktion chemisch einfach ist, muss das Substrat bei der Wasserabspaltung aus 4-Hydroxybutyryl-CoA erst durch eine radikalische Einelektronen-Oxidation in die reaktionsbereite Form überführt werden.

Eisen-Schwefel-Cluster kommen nicht nur in aeroben Prozessen (unter Anwesenheit von Sauerstoff) vor, sondern spielen besonders im Stoffwechsel anaerober Organismen Schlüsselrollen. Das Fehlen von Sauerstoff in der Uratmosphäre und das reichliche Vorhandensein von Eisen und Schwefelwasserstoff führten zu der Hypothese, dass einfache Eisen-Schwefel-Verbindungen (Pyrite) zum Ursprung des Lebens beigetragen haben könnten. Die Wissenschaftler konzentrieren sich in ihrer Forschung deshalb auf die Reaktionsmechanismen dieser Verbindungen unter Abwesenheit von Sauerstoff.

Die Bakterienfamilie der Clostridien, zu denen das Wundstarrkrampf erregende Clostridium tetani gehört, kann mit Unterstützung von Eisen-Schwefel-Proteinen bestimmte Aminosäuren - die Bausteine von Proteinen - zur Energiegewinnung nutzen. Clostridien können nur in sauerstofffreier Umgebung als Bodenbakterien oder auch im Verdauungstrakt von Säugetieren überleben. Clostridium aminobutyricum ist Spezialist für die Energiegewinnung aus 4-Aminobuttersäure, die im Nervensystem die Weiterleitung von Signalen zwischen Nervenzellen hemmt.

Clostridium aminobutyricum benötigt für die Vergärung von 4-Aminobuttersäure das Eisen-Schwefel-Enzym 4-Hydroxybutyryl-CoA-Dehydratase (4-BUDH). Aus den Kristallen des Enzyms konnten die Wissenschaftler der Abteilung Strukturforschung am Max-Planck-Institut für Biochemie in Martinsried - in enger Kooperation mit dem Laboratorium für Mikrobiologie der Universität Marburg - durch Röntgenstrukturanalyse die dreidimensionale Struktur des Proteins rekonstruieren.

Die Strukturforscher haben eindeutig gezeigt, dass 4-BUDH aus vier Untereinheiten besteht, wobei jede der Untereinheiten jeweils ein aktives Zentrum mit einem Eisen-Schwefel-Cluster (bestehend aus vier Schwefel- und vier Eisen-Atomen) und Flavin enthält. Während Eisen-Schwefel-Cluster normalerweise nur durch die Schwefelatome der Aminosäure Cystein mit dem Protein verbunden sind, verankern in der 4-BUDH drei Cysteine sowie die Aminosäure Histidin den Cluster. Ein Vergleich der Faltung der Proteinstruktur mit anderen bekannten Strukturen offenbarte eine Verwandtschaft von 4-BUDH zum Enzym Acyl-CoA Dehydrogenase (MCAD), das im Fettsäure-Stoffwechsel des Menschen eine wichtige Rolle spielt, jedoch keine Eisen-Schwefel-Verbindungen besitzt.

Berta Martins, Holger Dobbek (jetzt Juniorprofessor an der Universität Bayreuth), und Albrecht Messerschmidt aus der Abteilung Strukturforschung (Prof. Robert Huber) des Martinsrieder Instituts und Irfan Cinkaya (jetzt Mitarbeiter bei Chiron Vaccines in Marburg) und Wolfgang Buckel an der Universität Marburg, konnten aus der ausgeprägten Ähnlichkeit der beiden Enzyme, 4-BUDH und MCAD, Rückschlüsse auf die Funktion der Enzyme und den genauen Stoffwechselweg schließen: Beide Enzyme besitzen so genannte Flavin-Strukturen, die an der Umsetzung ihrer jeweiligen Substrate (bei 4-BUDH ist es 4-Hydroxybutyryl-CoA) beteiligt sind. Die Wissenschaftler vermuten, dass - im Gegensatz zu bisherigen Theorien - MCAD ebenso wie 4-BUDH die Reaktion über Flavinradikale katalysiert. Zusätzlich wird von der 4-BUDH das Eisen-Schwefel-Cluster zur Wasserabspaltung benötigt.

Weil beide Enzyme ähnliche Struktur und Funktionsweisen haben, gehen die Wissenschaftler von einer gemeinsamen Ursprungsform in der Evolution aus. Jedoch nur 4-BUDH besitzt Eisen-Schwefel-Verbindungen. Daraus kann geschlossen werden, dass die Natur die stabile Struktur des Vorgängers beider Enzyme erhalten hat und eine Evolution durch kleine Veränderungen an einem bestehenden katalytischen System stattfand. Die Strukturaufklärung der 4-Hydroxybutyryl-CoA Dehydratase (4-BUDH) hat jetzt völlig neue Erkenntnisse der Beteiligung von Radikalen bei Stoffwechselreaktionen zur Energiegewinnung geliefert, denn nun können sich die Wissenschaftler die genauen Reaktionswege erklären. Sie eröffnen damit auch für andere Stoffwechselreaktionen, an denen Flavin und Eisen-Schwefel-Verbindungen beteiligt sind, wesentliche Details, die zum weiteren Verständnis des Mechanismus dieser Enzymreaktionen notwendig sind.

Originalveröffentlichung:

Berta M. Martins, Holger Dobbek, Irfan Cinkaya, Wolfgang Buckel, and Albrecht Messerschmidt, "Crystal structure of 4-hydroxybutyryl-CoA dehydratase: Radical catalysis involving a [4Fe- 4S] cluster and flavin", PNAS, November 2, 2004, vol. 101, no. 44, 15645-15649

Weitere Informationen erhalten Sie von:

Prof. Dr. Albrecht Messerschmidt
Max-Planck-Institut für Biochemie, Martinsried
Tel.: 089 8578-2669
E-Mail: messersc@biochem.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designer-Proteine falten DNA
24.03.2017 | Technische Universität München

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Cybersicherheit für die Bahn von morgen

24.03.2017 | Informationstechnologie

Schnell und einfach: Edge Datacenter fürs Internet of Things

24.03.2017 | CeBIT 2017

Designer-Proteine falten DNA

24.03.2017 | Biowissenschaften Chemie