Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fluoreszenzmikroskopie auf die Spitze getrieben

10.11.2004


DNS-Fäden, die mit dem Fluoreszenzfarbstoff Cy-3 markiert und mit dem "Tip on Aperture"- Raster-Nahfeldmikroskop untersucht wurden. a) Topographisches Bild; b) Fluoreszenzbild; c) modellierte Fluoreszenzverteilung. Die Farben in a) und c) symbolisieren die Zuverlässigkeit der berechneten Daten: grün bedeutet sehr gute Übereinstimmung mit b); rot kennzeichnet Daten, bei denen die Fluoreszenz gestört war. Die Kreuze in a) kennzeichnen die berechnete Lage der Fluoreszenzmoleküle, die Zahlen in Abbildung 2c) beschreiben die errechnete räumliche Orientierung. Bild: Max-Planck-Institut für Biochemie


Schematische Darstellung der "Tip on Aperture"-Sonde des Raster-Nahfeldmikroskops zusammen mit einer DNS-Probe: Spitze (dunkelblau) Aperturblende (grün), Moleküle des Fluoreszenzfarbstoffs (rot) an den Enden der DNS-Fäden. Das Fluoreszenzlicht wird durch den Objektträger (durchsichtiges Glimmerplättchen) geleitet und von Linsen (nicht dargestellt) gesammelt. Bild: Max-Planck-Institut für Biochemie


Forscher des Max-Planck-Instituts für Biochemie stellen neues optisches Nahfeldmikroskop zur Analyse biologischer Makromoleküle vor


Einzelne Farbstoffmoleküle, die nur rund zehn Millionstel Millimeter voneinander entfernt sind, können mit einem neuen Nahfeldmikroskop optisch einzeln abgebildet werden. Wissenschaftler der Abteilung Molekulare Strukturbiologie am Max-Planck-Institut für Biochemie in Martinsried haben mit ihrem "Tip on Aperture"-Nahfeldmikroskop erstmals Lage und Orientierung einzelner fluoreszierender Farbstoffmoleküle bestimmt, die an jeweils einen DNS-Strang gebunden waren, dessen Topographie bei der Abbildung gleichzeitig miterfasst wurde.

Mit ihrer neuen Entwicklung erweitern die Forscher die Möglichkeiten der Fluoreszenzmikroskopie, mit der markierte Moleküle in der Molekular- und Zellbiologie untersucht werden, durch die sehr hohe Auflösung im Bereich von zehn Nanometern, die sie mit ihrer speziellen Nahfeldsonde erreichen. Diese Ergebnisse präsentieren sie in der aktuellen Online-Ausgabe von Physical Review Letters vom 10. November 2004.


Um biologische Strukturen im Detail beobachten und Rückschlüsse auf ihren Standort und ihre Funktion in einer Zelle bzw. einem Organismus ziehen zu können, benötigt man immer leistungsfähigere Mikroskope. Eine von den Biophysikern am Max-Planck-Institut für Biochemie entwickelte hochauflösende Methode ist die optische Rasternahfeldmikroskopie, die auf der Lichtkonzentration an einer Spitze basiert. Hierbei rastert eine feine Nadelspitze von nur wenigen Nanometern Durchmesser an ihrem Ende (1 Nanometer ist ein Millionster Teil eines Millimeters) eine Oberfläche ab: Einerseits tastet diese Spitze durch Kraftwechselwirkung die Topographie der Probe ab, gleichzeitig aber wird Laserlicht über Linsen auf die Nadelspitze fokussiert, die das Licht an ihrem Ende noch weiter konzentriert. Mit dieser filigranen Lichtsonde lassen sich dann optisch Details des Objekts in einer Größenordnung abbilden, die dem Radius der Nadelspitze entspricht.

Während man heute die Nahfeldmikrokopie bereits erfolgreich in der Materialforschung einsetzt, gab es bei der Anwendung der Nahfeldmikroskopie auf biologische Strukturen bisher noch Probleme. So setzt man sehr häufig zur Untersuchung von Zellen und ihren Stoffwechselvorgängen fluoreszierende Farbstoffe ein, um beispielsweise Proteine und ihre Aktivität im normalen Mikroskop mit Licht bestimmter Wellenlänge sichtbar zu machen. Doch leider bleichen die Farbstoffe der Fluoreszenz-Markierung sehr schnell aus. Das trat insbesondere bei der auf Nadelspitzen beruhenden Nahfeldmikroskopie auf, da hier das eingestrahlte Laserlicht auch durch die besten Linsen nur auf einen Bereich gebündelt werden kann, der noch weit größer ist als der Spitzenradius.

Die Max-Planck-Wissenschaftler Heinrich Frey, Susanne Witt und Karin Felder haben nun unter Leitung von Reinhard Guckenberger eine neue Version der optischen Nahfeldtechnik entwickelt, bei der das Bleichproblem nicht mehr entscheidend ist: Hierbei wird die Spitze jetzt durch eine Glasfaser mit einer Apertur-Blende an deren Ende beleuchtet. Die Apertur begrenzt das Laserlicht auf einen kleinen Bereich um die Abtastspitze, so dass ein vorzeitiges Ausbleichen der Fluoreszenzfarbstoffe minimiert wird. Die Spitze selbst sorgt noch einmal für eine weitere Konzentration des Lichts an ihrem Ende. Mit dieser "Tip on Aperture"-Sonde (zu Deutsch: "Spitze auf Apertur-Blende", kurz "TOA") können die Wissenschaftler nun fluoreszenzmarkierte oder auch selbst fluoreszierende Moleküle, zum Beispiel an der Oberfläche von biologischen Strukturen, mit sehr hoher Auflösung erkennen.

Mit dem neuen TOA-Nahfeldmikroskop ist es den Martinsrieder Wissenschaftlern somit gelungen, die hervorragende Auflösung eines optischen Nahfeldmikroskops von bis zu zehn Nanometern mit der Fluoreszenzmarkierung einzelner Moleküle zu kombinieren. Dazu verknüpften die Forscher die Enden von DNS-Molekülen mit dem Farbstoff Cy-3, brachten die DNS auf einen Probenträger auf und rasterten sie mit der neuen TOA-Nahfeldmikroskop-Spitze ab. Dabei registrierten die Wissenschaftler gleichzeitig sowohl die Topographie der DNS-Moleküle als auch die Fluoreszenz der einzelnen Cy-3-Moleküle. Tatsächlich fand sich die Fluoreszenz ganz überwiegend an Enden der DNS. Sie trat für jedes Cy-3-Molekül in charakteristischen Mustern auf. Mit Hilfe eines einfachen Modells lassen sich daraus sowohl der genaue Ort (Genauigkeit: höher als ein Nanometer) als auch die räumliche Orientierung des Fluoreszenzfarbstoffs bestimmen.

Die neuartige optische TOA-Nahfeldmikroskopie macht es jetzt möglich, einzeln präparierte biologische Strukturen, z. B. Proteinkomplexe detailliert zu untersuchen. Auch können Molekülkomplexe direkt auf der Oberfläche von Zellen oder Zellorganellen dargestellt werden. Ziel dabei ist, die Funktion der Komplexe direkt zu beobachten. Dazu wollen die Biophysiker am Max-Planck-Institut für Biochemie ihr neues Mikroskop noch weiter optimieren: So sollen Untersuchungen klären, was die optimale Geometrie der Sonde ist und wie das Laserlicht im Einzelnen von der Apertur-Blende zum Spitzenende gelangt. Ganz sicher eröffnet das neue optische Nahfeldmikroskop bereits jetzt völlig neue Untersuchungsmöglichkeiten für die Molekular- und Zellbiologie.

Dr. Andreas Trepte | alfa
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Biochemie Laserlicht Max-Planck-Institut Nahfeldmikroskop Nanometer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics