Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fluoreszenzmikroskopie auf die Spitze getrieben

10.11.2004


DNS-Fäden, die mit dem Fluoreszenzfarbstoff Cy-3 markiert und mit dem "Tip on Aperture"- Raster-Nahfeldmikroskop untersucht wurden. a) Topographisches Bild; b) Fluoreszenzbild; c) modellierte Fluoreszenzverteilung. Die Farben in a) und c) symbolisieren die Zuverlässigkeit der berechneten Daten: grün bedeutet sehr gute Übereinstimmung mit b); rot kennzeichnet Daten, bei denen die Fluoreszenz gestört war. Die Kreuze in a) kennzeichnen die berechnete Lage der Fluoreszenzmoleküle, die Zahlen in Abbildung 2c) beschreiben die errechnete räumliche Orientierung. Bild: Max-Planck-Institut für Biochemie


Schematische Darstellung der "Tip on Aperture"-Sonde des Raster-Nahfeldmikroskops zusammen mit einer DNS-Probe: Spitze (dunkelblau) Aperturblende (grün), Moleküle des Fluoreszenzfarbstoffs (rot) an den Enden der DNS-Fäden. Das Fluoreszenzlicht wird durch den Objektträger (durchsichtiges Glimmerplättchen) geleitet und von Linsen (nicht dargestellt) gesammelt. Bild: Max-Planck-Institut für Biochemie


Forscher des Max-Planck-Instituts für Biochemie stellen neues optisches Nahfeldmikroskop zur Analyse biologischer Makromoleküle vor


Einzelne Farbstoffmoleküle, die nur rund zehn Millionstel Millimeter voneinander entfernt sind, können mit einem neuen Nahfeldmikroskop optisch einzeln abgebildet werden. Wissenschaftler der Abteilung Molekulare Strukturbiologie am Max-Planck-Institut für Biochemie in Martinsried haben mit ihrem "Tip on Aperture"-Nahfeldmikroskop erstmals Lage und Orientierung einzelner fluoreszierender Farbstoffmoleküle bestimmt, die an jeweils einen DNS-Strang gebunden waren, dessen Topographie bei der Abbildung gleichzeitig miterfasst wurde.

Mit ihrer neuen Entwicklung erweitern die Forscher die Möglichkeiten der Fluoreszenzmikroskopie, mit der markierte Moleküle in der Molekular- und Zellbiologie untersucht werden, durch die sehr hohe Auflösung im Bereich von zehn Nanometern, die sie mit ihrer speziellen Nahfeldsonde erreichen. Diese Ergebnisse präsentieren sie in der aktuellen Online-Ausgabe von Physical Review Letters vom 10. November 2004.


Um biologische Strukturen im Detail beobachten und Rückschlüsse auf ihren Standort und ihre Funktion in einer Zelle bzw. einem Organismus ziehen zu können, benötigt man immer leistungsfähigere Mikroskope. Eine von den Biophysikern am Max-Planck-Institut für Biochemie entwickelte hochauflösende Methode ist die optische Rasternahfeldmikroskopie, die auf der Lichtkonzentration an einer Spitze basiert. Hierbei rastert eine feine Nadelspitze von nur wenigen Nanometern Durchmesser an ihrem Ende (1 Nanometer ist ein Millionster Teil eines Millimeters) eine Oberfläche ab: Einerseits tastet diese Spitze durch Kraftwechselwirkung die Topographie der Probe ab, gleichzeitig aber wird Laserlicht über Linsen auf die Nadelspitze fokussiert, die das Licht an ihrem Ende noch weiter konzentriert. Mit dieser filigranen Lichtsonde lassen sich dann optisch Details des Objekts in einer Größenordnung abbilden, die dem Radius der Nadelspitze entspricht.

Während man heute die Nahfeldmikrokopie bereits erfolgreich in der Materialforschung einsetzt, gab es bei der Anwendung der Nahfeldmikroskopie auf biologische Strukturen bisher noch Probleme. So setzt man sehr häufig zur Untersuchung von Zellen und ihren Stoffwechselvorgängen fluoreszierende Farbstoffe ein, um beispielsweise Proteine und ihre Aktivität im normalen Mikroskop mit Licht bestimmter Wellenlänge sichtbar zu machen. Doch leider bleichen die Farbstoffe der Fluoreszenz-Markierung sehr schnell aus. Das trat insbesondere bei der auf Nadelspitzen beruhenden Nahfeldmikroskopie auf, da hier das eingestrahlte Laserlicht auch durch die besten Linsen nur auf einen Bereich gebündelt werden kann, der noch weit größer ist als der Spitzenradius.

Die Max-Planck-Wissenschaftler Heinrich Frey, Susanne Witt und Karin Felder haben nun unter Leitung von Reinhard Guckenberger eine neue Version der optischen Nahfeldtechnik entwickelt, bei der das Bleichproblem nicht mehr entscheidend ist: Hierbei wird die Spitze jetzt durch eine Glasfaser mit einer Apertur-Blende an deren Ende beleuchtet. Die Apertur begrenzt das Laserlicht auf einen kleinen Bereich um die Abtastspitze, so dass ein vorzeitiges Ausbleichen der Fluoreszenzfarbstoffe minimiert wird. Die Spitze selbst sorgt noch einmal für eine weitere Konzentration des Lichts an ihrem Ende. Mit dieser "Tip on Aperture"-Sonde (zu Deutsch: "Spitze auf Apertur-Blende", kurz "TOA") können die Wissenschaftler nun fluoreszenzmarkierte oder auch selbst fluoreszierende Moleküle, zum Beispiel an der Oberfläche von biologischen Strukturen, mit sehr hoher Auflösung erkennen.

Mit dem neuen TOA-Nahfeldmikroskop ist es den Martinsrieder Wissenschaftlern somit gelungen, die hervorragende Auflösung eines optischen Nahfeldmikroskops von bis zu zehn Nanometern mit der Fluoreszenzmarkierung einzelner Moleküle zu kombinieren. Dazu verknüpften die Forscher die Enden von DNS-Molekülen mit dem Farbstoff Cy-3, brachten die DNS auf einen Probenträger auf und rasterten sie mit der neuen TOA-Nahfeldmikroskop-Spitze ab. Dabei registrierten die Wissenschaftler gleichzeitig sowohl die Topographie der DNS-Moleküle als auch die Fluoreszenz der einzelnen Cy-3-Moleküle. Tatsächlich fand sich die Fluoreszenz ganz überwiegend an Enden der DNS. Sie trat für jedes Cy-3-Molekül in charakteristischen Mustern auf. Mit Hilfe eines einfachen Modells lassen sich daraus sowohl der genaue Ort (Genauigkeit: höher als ein Nanometer) als auch die räumliche Orientierung des Fluoreszenzfarbstoffs bestimmen.

Die neuartige optische TOA-Nahfeldmikroskopie macht es jetzt möglich, einzeln präparierte biologische Strukturen, z. B. Proteinkomplexe detailliert zu untersuchen. Auch können Molekülkomplexe direkt auf der Oberfläche von Zellen oder Zellorganellen dargestellt werden. Ziel dabei ist, die Funktion der Komplexe direkt zu beobachten. Dazu wollen die Biophysiker am Max-Planck-Institut für Biochemie ihr neues Mikroskop noch weiter optimieren: So sollen Untersuchungen klären, was die optimale Geometrie der Sonde ist und wie das Laserlicht im Einzelnen von der Apertur-Blende zum Spitzenende gelangt. Ganz sicher eröffnet das neue optische Nahfeldmikroskop bereits jetzt völlig neue Untersuchungsmöglichkeiten für die Molekular- und Zellbiologie.

Dr. Andreas Trepte | alfa
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Biochemie Laserlicht Max-Planck-Institut Nahfeldmikroskop Nanometer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie