Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Leuchtkugeln

14.10.2004


Neue Methode zur Beschichtung einzelner leuchtender - Nanokristalle (Quantenpunkte) mit Siliciumdioxid



Großes wird von den Zwerglein erwartet: So sollen sie Tumore markieren, großflächige Flachbildschirme verbessern helfen oder die Basis für die optische Datenverarbeitung von Morgen bilden. Die vielversprechenden Winzlinge sind leuchtende Quantenpunkte aus Halbleitermaterialien. Quantenpunkte sind nanoskopische Kristalle, die so klein sind, dass ihre chemischen Eigenschaften denen von einzelnen Molekülen ähneln. Aber erst die richtige Beschichtung macht die Kleinen voll funktionstüchtig. In einer deutsch-australischen Kooperation wurde nun eine neue, robuste Methode entwickelt, um Kriställchen aus Cadmiumselenid mit Zinksulfid-Schale (CdSe/ZnS) auf einfache Weise mit Siliciumdioxid so zu beschichten, dass jedes Siliciumdioxid-Kügelchen genau einen Quantenpunkt enthält.



Native CdSe-Quantenpunkte sind nur in unpolaren Lösemitteln stabil, aber für viele Anwendungen sind polare, protische Medien (Medien, die Protonen an gelöste Stoffe abgeben können) unumgänglich, etwa die wässrige Umgebung bei biomedizinischen Anwendungen. Eine Beschichtung muss her, um die Leuchtpünktchen zu stabilisieren, vor Sauerstoff zu schützen und um die Ablagerung von Substanzen zu unterbinden, die das Leuchten stören. Dabei darf die Beschichtung selber die Lumineszenz nicht beeinträchtigen und sollte biokompatibel sein. Eine Siliciumdioxidschicht würde diese Forderungen erfüllen. "Die üblichen Siliciumdioxid-Beschichtungsmethoden brauchen aber bereits ein polares Lösungsmittel," erklärt Thomas Nann vom Freiburger Materialforschungszentrum das Dilemma.

Zusammen mit Paul Mulvaney von der University of Melbourne entwickelte Nann eine neue Beschichtungsmethode: Die CdSe/ZnS-Nanokristalle liegen zunächst mit einer Beschichtung aus einer oberflächenaktiven organischen Phosphorverbindung vor, die dann schrittweise gegen polare Liganden ausgetauscht wird. Ligand der Wahl ist eine spezielle organische schwefelhaltige Silicium-Verbindung. Nun kann der Transfer in das polare, protische Lösungsmittel Ethanol erfolgen. Es enthält Tetraethoxysilan (TEOS) sowie ein kleine Menge an Wasser und Ammoniak, welche die Zersetzung von TEOS zu Siliciumdioxid katalysieren, das sich dann an den Nanokristalle abscheidet. Das Mengenverhältnis aller "Zutaten" muss exakt austariert sein. Nann: "Es muss sich genug Siliciumdioxid bilden, damit die Abscheidung vorangeht. Aber es darf nicht zuviel auf einmal sein, sonst entstehen zusätzlich leere Kügelchen." Zudem dürfen die wachsenden Partikel nicht verklumpen, sonst gibt es "Rosinenbrötchen" - Kugeln mit mehreren Quantenpunkten. Wasser hilft dagegen, weil es die Aufladung der Partikeloberfläche und damit die gegenseitige Abstoßung fördert. Durch sukzessive Zugabe von TEOS können die Kügelchen weiter beschichtet werden. So sind Durchmesser von 30 nm bis 1 µm zugänglich.

Kontakt:
Priv.-Doz. Dr. T. Nann
Freiburger Materialforschungszentrum (FMF)
Albert-Ludwigs-Universität Freiburg
Stefan-Meier-Str. 21
D-79104 Freiburg
Germany
Tel.: (+49) 761-203-4755
Fax: (+49) 761-203-4768
E-mail: thomas.nann@fmf.uni-freiburg.de

Angewandte Chemie Presseinformation Nr. 40/2004
Angew. Chem. 2004, 116 (40), 5511 - 5514
ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de
http://www.uni-freiburg.de

Weitere Berichte zu: Beschichtung Quantenpunkt Siliciumdioxid TEOS

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics