Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher belegen Wechselwirkungen von Eiweißen und Wasser

20.04.2004


Forschern der Ruhr-Universität Bochum und der Universität Dortmund um Prof. Dr. Dominik Marx (Lehrstuhl für Theoretische Chemie der RUB) ist es gelungen, die Veränderung der Wasserschicht in Proteinnähe anhand einer kurzen synthetischen Eiweißkette (Peptid) sehr detailliert zu untersuchen. Fazit: Wasser ist nicht, wie bisher üblicherweise angenommen, nur Statist, sondern tritt ins Rampenlicht der Reaktion. Sein dynamisches, temperaturabhängiges Verhalten bestimmt die Proteineigenschaften maßgeblich mit. Über ihre Ergebnisse berichten die Forscher im Fachmagazin "Physical Review Letters".



Wenn wir ein Ei kochen, spielt das Wasser nicht nur um das Ei herum, sondern auch in den winzigen Strukturen des Eiweißes eine große Rolle: Forschern der Ruhr-Universität Bochum und der Universität Dortmund um Prof. Dr. Dominik Marx (Lehrstuhl für Theoretische Chemie der RUB) ist es nun gelungen, die Veränderung der Wasserschicht in Proteinnähe anhand einer kurzen synthetischen Eiweißkette (Peptid) sehr detailliert zu untersuchen. Fazit: Wasser ist nicht, wie bisher üblicherweise angenommen, nur Statist, sondern tritt ins Rampenlicht der Reaktion. Sein dynamisches, temperaturabhängiges Verhalten bestimmt die Proteineigenschaften maßgeblich mit. Über ihre Ergebnisse berichten die Forscher im Fachmagazin "Physical Review Letters".



Wasser greift aktiv in Funktion von Biomolekülen ein

Proteine (Eiweiße) sind lange Kettenmoleküle, die aus Aminosäuren in wohldefinierter Abfolge aufgebaut sind. Erhitzt man sie oder kühlt sie ab, gehen die für biologische Funktionen wichtigen Eigenschaften des nativen, gefalteten Zustands verloren ("Denaturierung"). Normalerweise ist in der Umgebung von Proteinen immer auch Wasser zu finden, das aber traditionell als unbeteiligtes Lösungsmittel betrachtet wurde. Im Laufe der Zeit haben sich jedoch die Hinweise gemehrt, dass Wasser aktiv in solche Prozesse eingreift: "Die Eigenschaften von Wasser scheinen eine bestimmende Rolle bei der Funktion von Biomolekülen zu spielen", so Prof. Marx. "Allerdings ist es schwierig, solche Effekte anhand komplexer Biomoleküle, wie sie in der Natur vorkommen, wissenschaftlich fundiert zu untersuchen." Erfolgversprechender ist das Studium von synthetischen Biomimetika, also viel einfacherer Substanzen, die den natürlich vorkommenden Molekülen nachempfunden sind und diesen in den entscheidenden Eigenschaften gleichen.

Kleines Modellmolekül untersucht

Ein solches, nur acht Bausteine umfassendes Molekül ist das Oktapeptid GVG(VPGVG). Es ist aus nur drei verschiedenen Aminosäuren (Glycin, Valin und Prolin) aufgebaut und dient als "verkleinertes" Modell für das Bindegewebsprotein Elastin. An diesem Modell konnten die Forscher mit molekulardynamischen Simulationen zeigen, dass sich die Dynamik der Wassermoleküle in unmittelbarer Nähe des Proteins bei Temperaturänderung charakteristisch verändert. Diese Veränderungen konnten sie wiederum mit Strukturänderungen des Modellproteins korrelieren. "Das gelang uns nur dank der engen Zusammenarbeit von Theoretikern und Experimentatoren in der DFG-Forschergruppe ’Wasser’ (FOR 436)", unterstreicht Prof. Marx.

Die Rolle des Grenzflächenwassers

Das kurze Modell-Peptid liegt bei ca. 50 Grad Celsius in einem maximal kompakten Zustand vor ("gefaltete Konformation") und streckt sich ("entfaltete Konformation") bei Temperatursteigerung und -senkung. Daher konnten die Forscher beide Prozesse im Temperaturbereich des flüssigen Wassers untersuchen. Sie zeigten, dass die temperaturabhängigen Strukturänderungen des Peptids sich in den Wechselwirkungen zum Wasser widerspiegeln. Insbesondere die Wasserstoffbrückenbindungen zwischen Wassermolekülen und dem Proteinrückgrat ("backbone") lassen sich im Faltungsbereich bis zu ca. 50 Grad Celsius deutlich schwerer brechen als solche zwischen Wassermolekülen in reinem Wasser ("bulk"). Dies ändert sich jedoch abrupt bei ca. 50 Grad Celsius: Bei der Entfaltung brechen die Wasserstoffbrücken mit geringerem Energieaufwand als in reinem Wasser, sie sind also gegenüber diesen geschwächt. Damit haben die Forscher erstmals die Änderung des dynamischen Verhaltens des "Grenzflächenwassers" bei Faltung und Entfaltung eines kurzen Peptids nachgewiesen. Zur Zeit untersuchen sie, ob dies ein Spezifikum kurzer Peptide, oder auch für langkettigere Proteine charakteristisch ist.

Titelaufnahme

E. Schreiner, C. Nicolini, B. Ludolph, R. Ravindra, N. Otte, A. Kohlmeyer, R. Rousseau, R. Winter, and D. Marx: Folding and Unfolding of an Elastinlike Oligopeptide: "Inverse Temperature Transition," Reentrance, and Hydrogen-Bond Dynamics. In: Physical Review Letters, Band 92, Nr. 14, S. 148101 (2004).

Weiterführende Literatur

Siehe auch R. Rousseau, E. Schreiner, A. Kohlmeyer, and D. Marx: Temperature-Dependent Conformational Transitions and Hydrogen-Bond Dynamics of the Elastin-Like Octapeptide GVG(VPGVG): a Molecular-Dynamics Study. In: Biophysical Journal, Band 86, S. 1393 (2004).
Siehe auch den populärwissenschaftlichen Artikel H. Weingärtner und D. Marx: Wasser - mehr als ein Lösungsmittel: Das Eis ist heiß. In ChemieRUBIN - Das Wissenschaftsmagazin der RUB (2003), S. 22.

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, Fax: 0234/32-14045, E-Mail: dominik.marx@theochem.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.rub.de
http://www.forschergruppe436.de

Weitere Berichte zu: Biomolekül Eiweiß Peptid Protein RUB Wechselwirkung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit