Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligenter Paketdienst in der Zelle

06.04.2004


Tübinger Max-Planck-Wissenschaftler haben bisher unbekannten Mechanismus entdeckt, wie Zellen ihren internen Transport optimieren


Ausschnitt aus einer elektronenmikroskopischen Aufnahme einer Hefezelle. Das endoplasmatische Retikulum ist blau, Transportvesikel sind grün und Golgi-Zisternen rot angefärbt.
Bild: Friedrich-Miescher-Laboratorium/Schwarz



Die Zelle ist die einfachste lebensfähige Ansammlung von Materie. Die meisten ihrer Stoffwechselreaktionen spielen sich im Zytoplasma ab, das zahlreiche Organellen (Reaktionsräume) enthält, so dass viele chemische Vorgänge gleichzeitig ablaufen können. Doch die für Lebensprozesse essentiellen Proteine werden nur im Zytoplasma hergestellt. Deshalb herrscht zwischen den Organellen ein intensiver "Pakettransport": Winzige Membranbläschen (Vesikel) transportieren Proteine und andere Substanzen gezielt von einem Ort zum anderen. Doch wie bewältigt es die Zelle, dass diese Pakete zur rechten Zeit am richtigen Ort ankommen? Wissenschaftler des Friedrich-Miescher-Laboratoriums der Max-Planck-Gesellschaft haben jetzt einen bisher nicht bekannten "Etikettierungsmechanismus" entdeckt, der verhindert, das einmal abgeschickte Pakete mit sekretorischen Proteinen wieder zu ihrem Absender zurückkommen können (Science, 9. April 2004). Diese Erkenntnis ist von grundsätzlicher Bedeutung und praktischer Relevanz, bedeutet doch eine Störung des sekretorischen Transports den Tod der Zelle.



Zellen enthalten verschiedene Organellen, also Membran-umschlossene Kompartimente, die jeweils spezifische Funktionen erfüllen. Dazu enthält jedes Kompartiment ein ganz bestimmtes Repertoire an Proteinen. Doch die Proteine werden nur in einem Kompartiment, nämlich dem Zytoplasma hergestellt. Von dort müssen sie zu ihrer jeweiligen Wirkungsstätte transportiert werden. Welche die Wirkungsstätte sein soll, ist schon in der Erbinformation des Proteins gespeichert. Der Eintritt ins Transportsystem der Zelle erfolgt durch das endoplasmatische Retikulum. Dort wird die Funktionalität der Eiweissstoffe überprüft, bevor sie in Membranhohlkugeln (Vesikel) verpackt werden. Die Größe der Vesikel und die Aufnahme der Proteinfracht (Cargo) kontrollieren spezifische zytoplasmatische Hüllenproteine. Jedes Kompartiment hat seine eigenen Hüllenproteine als "Verpackung", um Vesikel herzustellen. Zudem enthält jedes Vesikel ein Set an Signal-Proteinen, das sicherstellt, dass das Vesikel von der richtigen Zielmembran erkannt wird und schließlich damit verschmilzt.

Im Prinzip kann man sich den zellulären Transport von Vesikeln wie einen Paketversand per Post vorstellen: Das Zytoplasma stellt ein Produkt (Protein) her, das als Paket verschickt werden muss. Also bringt man es zum Postamt (endoplasmatische Retikulum ER). Vom Postamt kommt das Paket mit dem Lastwagen (mit COPII-Proteinen umhüllte Vesikel) zur Verteilerstelle (Golgi-Apparat). Von dort aus transportieren es dann die Postboten (mit Clathrin umhüllte Vesikel) zu den einzelnen Haushalten (verschiedene membranumhüllte Kompartimente der Zelle, wie Lysosom, Endosom etc.) oder es wird ins Ausland weitergeleitet (also aus der Zelle hinaus transportiert). Auf dem Rückwege nimmt der Lastwagen vom Verteileramt wieder Pakete mit, die für sein Postamt bestimmt sind oder die beschädigt wurden.

Proteine, die vom endoplasmatische Retikulum zum Golgi-Apparat gebracht werden müssen, benutzen COPII als Verpackung der Vesikel, während der Rücktransport vom Golgi zum ER durch COPI-umhüllte Vesikel erfolgt. Die Membran-gebundenen Transportfaktoren (v-SNAREs), die - wie ein "Adressaufkleber" - die Erkennung der Vesikel am Golgi-Apparat erlauben, werden in COPI-Vesikel wieder zum ER zurückgebracht, und können dann an einen neuen Transportzyklus teilnehmen. Doch die v-SNAREs, die für die Erkennung der COPI-Vesikel mit dem ER gebraucht werden, müssen erst über COPII-Vesikel zum Golgi gebracht werden. Vereinfacht ausgedrückt bedeutet dies, dass die unterschiedlich verpackten (COPI- und COPII-)Vesikel das gleiche Set an "Aufklebern" (SNARE-Proteinen) beinhalten. Die Hüllenproteine müssen die Vesikel verlassen, um die SNAREs zu exponieren und die Interaktion mit ähnlichen, spezifischen Proteinen (t-SNAREs) am Zielkompartiment zu erlauben.

Von daher ergibt sich die Frage, wie die vom ER kommenden, hüllenlosen Vesikel erkennen können, dass sie nun mit dem Golgi-Apparat fusionieren sollen und nicht wieder mit dem ER, da sowohl die vom Golgi als auch die vom ER kommenden Vesikel die gleichen v-SNAREs beinhalten? Oder anders ausgedrückt: Wodurch wird sichergestellt, dass der Transport im ER und Golgi in eine ganz bestimmte Richtung erfolgt? Dieser Frage sind die Wissenschaftler am Friedrich-Miescher Laboratorium der Max Planck Gesellschaft am Modellorganismus der Hefe Saccharomyces cerevisiae nachgegangen. Dabei haben sie eine Mutante identifiziert, bei der vom ER kommenden COPII-Vesikel tatsächlich mit dem ER verschmelzen können. Die Mutante Tip20-8 kann also die Rückfusion von COPII-Vesikeln mit dem ER nicht verhindern. Da Tip20 am ER lokalisiert ist und normalerweise zur Fusion von COPI-Vesikeln mit dem ER benötigt wird, kann man sich folgendes Wirkungsprinzip für dieses Protein vorstellen: Das nicht mutierte Protein Tip20 arbeitet wie der Chip-Leser am Eingang zu einem Geldautomaten: Entspricht der Chip den Vorgaben (ein vom Golgi kommender COPI-Vesikel), kann man zum Geldautomaten (der Vesikel fusioniert mit dem ER). Entspricht der Chip nicht der Definition (ein vom ER kommender COPII-Vesikel), öffnet sich die Tür nicht. Ist der Chipleser allerdings defekt (ein mutiertes Tip20-Protein: Tip20-8), kann natürlich jeder an den Geldautomaten heran (COPI- und COPII-Vesikel können mit dem ER fusionieren).

Diese Forschungsergebnisse weisen darauf hin, dass zusätzlich zu den bereits bekannten, spezifischen Transportfaktoren, die wie ein Adressaufkleber signalisieren, wohin das Vesikel soll, es noch ein weiteres System in der Zelle gibt, dass den Transport von Vesikeln und die Kommunikation in der Zelle steuert. Wie ein Beipack-Zettel enthält er die Botschaft "Nicht zurück zum Absender!". Mit diesem einfachen Trick stellt die Zelle sicher, das der Transport zwischen den nah beieinander liegenden Organellen nur unidirektional erfolgen kann, Vesikel nur mit der Ziel- und nicht mit der Absendermembran verschmelzen.

Der gerichtete Transport und die Kommunikation zwischen den verschiedenen Zellorganellen ist essentiell für das Überleben der Zelle. Die Kenntnis des jetzt entdeckten Mechanismus könnte deshalb einerseits neue Möglichkeiten eröffnen, den vesikulären Transport gezielt zu unterbrechen, zum Beispiel, um das Wachstum von Tumoren zu stoppen. Andererseits spielen Störungen des zellulären Transports bei bestimmten Krankheiten wie Diabetes oder Mukoviszidose eine wichtige Rolle. Inwieweit das am Beispiel der Hefe gewonnene Wissen auch dafür von Bedeutung ist, bleibt weiteren Untersuchungen überlassen.

Weitere Informationen erhalten Sie von:

Dr. Anne Spang
Friedrich-Miescher-Laboratorium
für biologische Arbeitsgruppen
in der Max-Planck-Gesellschaft, Tübingen
Tel.: 07071 601-840, Fax: -455
E-Mail: anne.spang@tuebingen.mpg.de

Dr. Anne Spang | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Berichte zu: COPII-Vesikel Golgi Golgi-Apparat Organellen Protein Vesikel Zelle Zytoplasma

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie