Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Technologien für die Proteomforschung

11.03.2004


EU-Förderung in Millionenhöhe für internationales Proteomics-Forschungsprojekt, das vom Max-Planck-Institut für Biochemie koordiniert wird


Abb. 1: Lokalisierung von Proteinen (farbig) innerhalb einer Zelle. Gezeigt sind verschiedene Auflösungsstufen im Kontext einer Zelle (Hintergrund). Die Anordnung der Proteine gibt Aufschluss über Organisation und Wechselwirkungen der einzelnen Proteine innerhalb der Zelle.

Bild: Max-Planck-Institut für Biochemie



Wissenschaftler des Max-Planck-Instituts für Biochemie koordinieren ein internationalen Konsortium, das sich im bislang größten EU-Forschungsprojekt auf dem Gebiet der Proteomforschung, dem INTERACTION PROTEOME-Projekt, zusammengeschlossen hat. Im 6. Europäischen Forschungsrahmenprogramm wird das Konsortium über fünf Jahre mit insgesamt 12 Millionen Euro gefördert. Das "Integrierte Projekt" vereint renommierte Wissenschaftler aus elf führenden europäischen wissenschaftlichen Einrichtungen sowie aus Industrieunternehmen, darunter die größten europäischen Hersteller von Massenspektrometern und Elektronenmikroskopen. Ihr gemeinsames Ziel ist es, neue Technologien für die Proteomforschung entwickeln. Das Projekt wurde bei einem Treffen zwischen dem Konsortium von "INTERACTION PROTEOME" und Vertretern der Europäischen Kommission Ende Januar in Rom offiziell eröffnet.



Ziel des Forschungskonsortiums ist es, aus verschiedenen standardisierten Routine-Techniken eine neue technologische Plattform zu schaffen, mit der man Protein-Interaktions-Netzwerke untersuchen kann, eine Herausforderung, die insbesondere den Bedürfnissen der biomedizinischen Forschung entspricht. Dazu sollen Methoden entwickelt werden, um Protein-gesteuerte Prozesse in lebenden Zellen schnell analysieren und modellieren und damit die technischen und methodischen Voraussetzungen für die Untersuchung des Verlaufs von Krankheiten sowie möglicher Therapien schaffen zu können. Der Schwerpunkt des Projekts liegt zunächst auf der Entwicklung schneller, hochsensitiver Geräte sowie neuer Methoden für die Proteinanalytik. Wissenschaftler der Universität Odense, Dänemark, des Flanders Interuniversity Institute for Biotechnology, Ghent, Niederlande, sowie des Max-Planck-Instituts für Biochemie, Martinsried, werden dazu gemeinsam mit den industriellen Partnern ThermoElectron GmbH, Bremen, FEI Electron Optics B.V., Eindhoven, Holland, und Jerini AG, Berlin, die dazu notwendige Technologieentwicklung vorantreiben.

Getestet werden sollen die neuen Technologien in speziell für die Gesundheitsforschung ausgewählten Modellsystemen. Hieran beteiligt sind wiederum Experten aus dem Martinsrieder Max-Planck-Institut, sowie vom GSF-Forschungszentrums für Umwelt und Gesundheit, Neuherberg bei München, und vom Beatson Institute for Cancer Research, Glasgow.

Mit dem schnellen Durchsatz von Proben wird auch die Datenmenge massiv ansteigen. Um diese effizient auswerten zu können, ist die Weiterentwicklung von Werkzeugen der Bioinformatik zur Speicherung, Interpretation und Verwertung der Datenmengen ein weiterer Schwerpunkt des INTERACTION PROTEOME-Projekts. Partner im Bereich der Bioinformatik sind die Europäische Protein-Interaktions-Datenbank MINT, Rom, das dänische Center for Biological Sequence Analysis, Lyngby, und das Heidelberger European Molecular Biology Laboratory, EMBL.

Die Koordination des Großprojekts haben mit Prof. Ulrich Hartl, Prof. Wolfgang Baumeister und Prof. Dieter Oesterhelt drei Direktoren des Max-Planck-Instituts für Biochemie übernommen. Sie tragen in unterschiedlichen Bereichen zum Erfolg von "INTERACTION PROTEOME" bei: Ulrich Hartl ist für die wissenschaftliche Koordination des gesamten Projektes verantwortlich. Er leitet am Max-Planck-Institut die Abteilung Zelluläre Biochemie, deren Forschungsschwerpunkt "Chaperone" bilden, also molekulare Maschinen, die für die richtige Faltung von Proteinen in Zellen zuständig sind. Fehlgefaltete Proteine können Aggregate bilden, die Prion-Erkrankungen wie die Rinderseuche BSE hervorrufen. Das Verständnis der Proteinfaltung ist daher für die Gesundheitsforschung äußerst wichtig und wird im Rahmen des EU-Projektes als höchst relevantes Modellsystem im Detail untersucht.

Wolfgang Baumeister leistet mit seiner Abteilung für Molekulare Strukturbiologie bei der Entwicklung der Cryo-Elektronentomographie seit Jahren Pionierarbeit. Gemeinsam mit dem Industriepartner FEI Electron Optics B.V. werden er und seine Mitarbeiter in diesem Projekt anwenderfreundliche Geräte und Software für die Elektronentomographie entwickeln. Damit sollen hoch auflösende, dreidimensionale Bilder intakter Zellen gewonnen werden, die völlig neue Einblicke in Struktur, Organisation und Arbeitsweise von Zellen ermöglichen.

In der von Dieter Oesterhelt geleiteten Abteilung für Membranbiochemie schließlich untersuchen Wissenschaftler vorwiegend Membranproteine urtümlicher Einzeller (Archeae) sowie Signale, die diese Proteine ins Innere ihrer Zellen abgeben. Derartige Signalketten funktionieren in vielen Organismen ähnlich, können allerdings in den einfacher aufgebauten Archeae schneller im Detail aufgeklärt werden als in höheren Lebewesen. Daher bilden Archeae das optimale Modellsystem für den Einstieg in eine computergestützte Modellierung von Signalwegen. Das Team um Oesterhelt wird daher mit neuentwickelten Simulationsprogrammen für komplexe Signaltransduktions-Netzwerke in höheren Zellen zu dem EU-Konsortium beitragen. Derartige Simulationsprogramme können in der Arzneimittelforschung wesentliche Beiträge zur optimierten Entwicklung neuer Pharmaka leisten, da man damit potentielle Auswirkungen eines Wirkstoffes schon vor einem experimentellen Test "in silico" testen kann.

Wesentliche Hilfestellung bei der Koordination des Projekts leistet von Max-Planck-Institut für Biochemie eigens eingerichtete EU-Koordinationsstelle, die von Anne-Katrin Werenskiold geleitet wird. "Es hat sich bewährt, dass sich eine Person ganz auf die Antragstellung konzentriert hat", sagt Hartl. "Die Wissenschaftler konnten sich damit auf die Konzeption ihrer wissenschaftlichen Zusammenarbeit konzentrieren, um die Formalitäten und Verwaltungsfragen kümmerte sich unsere Koordinationsstelle."
Die Koordinationsstelle wird in den folgenden fünf Jahren die praktische Durchführung des Projektes koordinieren, die Wissenschaftler dazu zu gemeinsamen Workshops und Seminaren zusammenbringen und weitgehend von allen administrativen Erfordernissen entlasten. Für die Biotech-Region München wird das hochrangige Kooperationsprojekt zukunftsweisende Ergebnisse und Entwicklungsmöglichkeiten bieten.

Das 6. Forschungsrahmenprogramm
Das 6. Forschungsrahmenprogramm der EU ist eines der größten Forschungsprogramme der Welt. Für eine Laufzeit von fünf Jahren ist es mit einem Gesamtbudget von 17,5 Milliarden Euro ausgestattet. Eines seiner wichtigsten Ziele ist die Schaffung eines gemeinsamen Europäischen Forschungsraums. Im Zentrum steht dabei, hochkarätige Wissenschaftler in ganz Europa für die Lösung aktueller technologischer Fragen in unterschiedlichen Bereichen der Wissenschaft, darunter in der Gesundheitsforschung, den Informations- und Nanotechnologien sowie der Umweltforschung miteinander zu vernetzen. So genannte "Neuen Instrumente", wie die Integrierten Projekte oder die Exzellenz-Netzwerke, ermöglichen erstmals die Bildung großer internationaler Partnerschaften mit einem Projektvolumen von jeweils bis zu 20 Millionen Euro für eine Laufzeit von maximal 5 Jahren.

Die "Integrierten Projekte" stellen die derzeit bevorzugt beantragte Projektform dar. Dabei fördert die EU internationale Partnerschaften aus Forschungsinstitutionen und Unternehmen, die innerhalb der Projektlaufzeit die technologische Entwicklungen von der Grundlagenforschung bis zur Marktreife führen. Industriebeteiligung und die Schaffung marktreifer Produkte bilden das wesentliche Charakteristikum dieser Projektform. Die ersten Aufrufe zur Antragstellung im 6. Rahmenprogramm der EU wurden im Dezember 2002 veröffentlicht. Knapp 12.000 Antragsteller haben sich in dieser Antragsrunde um ein Gesamtbudget von 5 Milliarden Euro beworben. Nach umfangreichen Auswahlverfahren starteten die ersten der erfolgreichen Projekte kruz nach dem Jahreswechsel 2003/2004.

Weitere Informationen erhalten Sie von:

Dr. Anne Katrin Werenskiold (Projektmanagerin)
Max-Planck-Institut für Biochemie, Martinsried
Tel.: 089 8578-2601
Fax: 089 8578-2203
E-Mail: kwerensk@biochem.mpg.de


Prof. Dr. Franz-Ulrich Hartl
Max-Planck-Institut für Biochemie, Martinsried
Tel.: 089 8578-2244
Fax: 089 8578-2211
E-Mail: uhartl@biochem.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de/eu
http://www.mpg.de/instituteProjekteEinrichtungen/institutsauswahl/biochemie/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie