Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien korrodieren Eisen

02.03.2004


Korrosionsschema


Mikroskopische Aufnahme neuartiger sulfatreduzierender Bakterien


Eisen ist das technologisch wichtigste Metall, hat aber einen Nachteil: Ungeschütztes Eisen rostet. Hauptschuld daran trägt der Sauerstoff der Luft, der Eisen in nasser Umgebung angreift. In vollständig wassergefüllten Rohrleitungen und Behältern, wo nur Wasser aber keine Luft vorhanden ist, wäre Eisen im Prinzip recht lange beständig. Doch statt von Sauerstoff wird das Eisen unter diesen Verhältnissen oft von Bakterien angegriffen, die speziell an ein Leben ohne Sauerstoff angepaßt sind. Man spricht von anaerober Biokorrosion. Diese ist seit Jahrzehnten bekannt und höchst unerwünscht, z.B. in der Erdöltechnologie. Weniger bekannt war, welche Bakterienarten die Hauptübeltäter sind und welcher Mechanismus dabei abläuft. Jetzt wurden neuartige Bakterien entdeckt, die Eisen deutlich schneller als bisher bekannte Arten korrodieren, aber dennoch bislang offensichtlich übersehen worden sind. Experimente sprechen dafür, daß diese Bakterien auf eine noch ungeklärte Weise, aber auf jeden Fall im engen Kontakt mit dem Eisen diesem Elektronen entziehen, und Elektronenentzug aus einem Metall heißt, daß dieses korrodiert.


Mit der ersten Herstellung von Eisen vor vermutlich fünftausend Jahren wurde der Menschheit das auch heute noch wichtigste Gebrauchsmetall beschert. Eisen, besonders in Form von Stählen, ist fest, elastisch, gut zu verarbeiten, härtbar und zudem preiswert. Eisen hat nur einen gravierenden Nachteil: Ohne Schutzanstrich oder ohne Legierung mit anderen, teureren Metallen rostet es, d.h. der Sauerstoff der Luft oxidiert das feste metallische Eisen in nasser Umgebung fortschreitend zu bröseligen, wasserhaltigen Oxiden, wobei - chemisch gesehen - das nullwertige Metall dreiwertig positiv wird. Doch auch unter Ausschluß von Sauerstoff ist Eisen nicht beliebig beständig, sondern wird von Wasser allein angegriffen; dabei entstehen flockige Formen des zweiwertig positiven Eisens und Wasserstoffgas. Zum Glück ist diese Korrosion unter Luftausschluß - im Vergleich zum Rosten an der Luft - sehr langsam. Deshalb hat man auch lange Zeit z.B. für Heizungsrohre normales Eisen verwendet. Solange sie innen mit Wasser gefüllt und luftfrei blieben, trat meist über Jahrzehnte kein nennenswerter Korrosionsschaden auf.

Bei der Auflösung des Eisens, ob mit oder ohne Sauerstoff, handelt es sich um sogenannte elektrochemische Prozesse, d.h. die chemischen Reaktionen sind mit dem Fließen elektrischer Ströme verbunden, etwa wie in einer kurzgeschlossenen Batterie. Da mag es zunächst überraschen, daß auch Mikroorganismen, also kleinste einzellige Lebewesen, bei der Eisenkorrosion ein Rolle spielen können. Tatsächlich weiß man aber schon seit mehr als siebzig Jahren, daß die sonst erstaunlich lange Haltbarkeit von Eisen in luftfreiem Wasser durch bestimmte Bakterien dramatisch verkürzt werden kann. Überhaupt verfügen diverse Mikroorganismen-Arten über Mechanismen, etliche harte Materialien wie Kalksandstein oder die Substanz unserer Zähne aufzulösen. Während die Auflösung letzterer Materialien relativ einfach allein durch Einwirkung ohne Beteiligung von elektrischen Strömen erklärt werden kann, ist die Auflösung von Eisen durch Mikroorganismen ein komplexer elektrochemischer Prozeß. Dieser macht sich nicht so sehr als flächige Korrosion sondern eher als Lochfraß bemerkbar, z.B. in Pipelines, und kann kostspielige Schäden verursachen. Hauptverursacher sind sogenannte sulfatreduzierende Bakterien. Sie sind überall in Gewässern verbreitet und können aber weder Mensch noch Tier noch Pflanze infizieren. Bei diesen Bakterien gibt es genau genommen gleich zwei Korrosionsmechanismen:


Der eine Korrosionsmechanismus ist offensichtlich: Diese Bakterien leben davon, daß sie, wie der Name sagt, das harmlose, in natürlichen Wässern häufige Sulfat (in ungelöster Form z.B. als Gips bekannt) zu Schwefelwasserstoff reduzieren, einer faulig riechenden, aggressiven und giftigen Substanz. Bei Arbeiten in schlecht belüfteten Abwassersystemen wird dieser Schwefelwasserstoff zu Recht gefürchtet. Als Reduktionsmittel für die Umwandlung von Sulfat in Schwefelwasserstoff dienen diesen Bakterien Produkte aus natürlichen Verwesungsprozessen, z.B. im häuslichen Abwässer, die dabei zu Kohlendioxid oxidiert werden. Der Schwefelwasserstoff greift dann das Eisen an, wobei sich pechschwarze Reaktionsprodukte bilden.

Der andere Korrosionsmechanismus ist weniger klar, obwohl schon um 1930 Modellvorstellungen dazu entwickelt wurden. Sulfatreduzierende Bakterien verwenden nämlich auch Wasserstoffgas, um Sulfat zu reduzieren. Weil sich auf Eisen in Wasser langsam Wasserstoffgas, oft als "kathodischer Wasserstoff" bezeichnet, als Produkt bildet, wurde lange angenommen, daß dessen Verbrauch durch die sulfatreduzierenden Bakterien die Auflösung des Metalls im Wasser beschleunigt. Ein solches Prinzip ist aus der Chemie wohlbekannt: Wird das Produkt aus einer antriebsschwachen chemischen Reaktion in einer zweiten, sich anschließenden Reaktion gleich weiter verbraucht, kommt die erste Reaktion auf Touren. Im Falle der Biokorrosion von Eisen ist jedoch diese verlockende Vorstellung offensichtlich nicht haltbar. Am Max-Planck-Institut für marine Mikrobiologie, Bremen, wurden in Zusammenarbeit mit dem Materialprüfungsamt in Bremen und dem Max-Planck-Institut für Eisenforschung, Düsseldorf, Bakterien entdeckt, welche Eisen deutlich schneller korrodieren, als es durch Verbrauch von Wasserstoffgas jemals möglich wäre. Alles spricht dafür, daß sie im engen Kontakt mit dem Eisen diesem direkt Elektronen entziehen und so gewissermaßen den Umweg über "kathodischen Wasserstoff" umgehen. Und Elektronenentzug aus Eisen bedeutet Korrosion. Wie ein Elektronenfluß über die winzig kurze, aber dennoch über eine "Stomleitung" zu überbrückende Strecke zwischen Eisen und Bakterienzellen zustande kommt, ist noch unbekannt. Versteht man erst einmal deren Biochemie, wird man auch gezielter forschen können, um Schutzmaßnahmen zu entwickeln.

Man darf annehmen, daß die neu entdeckten Bakterien eine wichtige, aber bisher übersehene Rolle bei der biologischen Eisenzerstörung spielen. Das Ausgangsexperiment für das Aufspüren dieser Bakterien war recht einfach: Zunächst wurden kleine Eisenstücke in Meeresschlamm in sauerstofffreien Flaschen gesteckt. Nach mehreren Wochen wurden die Bakterien, die auf dem allmählich dahinschwindenden Metall wuchsen, analysiert. Die eigentlich korrosiven Arten erwiesen sich dabei allerdings als schwieriger zu isolieren als begleitende Arten. Isolierung und experimentelle Untersuchung in Reinkulturen sind, wie schon zu Robert Kochs Zeiten, für eine kausale Analyse der Wirkung von Bakterien unabdingbar. Solche züchterischen Verfahren gehen heute Hand in Hand mit verfeinerten molekularbiologischen und mikroskopischen Analysen. Ohne diese Methodenkombination könnten die sehr diversen Bakterien als sehr kleine Organismen mit nur wenigen Tausendstel Millimetern Durchmesser und einfachen Zellformen kaum voneinander unterschieden und untersucht werden.

Dr. Manfred Schloesser | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Berichte zu: Bakterium Eisen Metall Sauerstoff Schwefelwasserstoff Wasserstoffgas

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der lange Irrweg der ADP Ribosylierung

26.04.2018 | Biowissenschaften Chemie

Belle II misst die ersten Teilchenkollisionen

26.04.2018 | Physik Astronomie

Anzeichen einer Psychose zeigen sich in den Hirnwindungen

26.04.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics