Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien korrodieren Eisen

02.03.2004


Korrosionsschema


Mikroskopische Aufnahme neuartiger sulfatreduzierender Bakterien


Eisen ist das technologisch wichtigste Metall, hat aber einen Nachteil: Ungeschütztes Eisen rostet. Hauptschuld daran trägt der Sauerstoff der Luft, der Eisen in nasser Umgebung angreift. In vollständig wassergefüllten Rohrleitungen und Behältern, wo nur Wasser aber keine Luft vorhanden ist, wäre Eisen im Prinzip recht lange beständig. Doch statt von Sauerstoff wird das Eisen unter diesen Verhältnissen oft von Bakterien angegriffen, die speziell an ein Leben ohne Sauerstoff angepaßt sind. Man spricht von anaerober Biokorrosion. Diese ist seit Jahrzehnten bekannt und höchst unerwünscht, z.B. in der Erdöltechnologie. Weniger bekannt war, welche Bakterienarten die Hauptübeltäter sind und welcher Mechanismus dabei abläuft. Jetzt wurden neuartige Bakterien entdeckt, die Eisen deutlich schneller als bisher bekannte Arten korrodieren, aber dennoch bislang offensichtlich übersehen worden sind. Experimente sprechen dafür, daß diese Bakterien auf eine noch ungeklärte Weise, aber auf jeden Fall im engen Kontakt mit dem Eisen diesem Elektronen entziehen, und Elektronenentzug aus einem Metall heißt, daß dieses korrodiert.


Mit der ersten Herstellung von Eisen vor vermutlich fünftausend Jahren wurde der Menschheit das auch heute noch wichtigste Gebrauchsmetall beschert. Eisen, besonders in Form von Stählen, ist fest, elastisch, gut zu verarbeiten, härtbar und zudem preiswert. Eisen hat nur einen gravierenden Nachteil: Ohne Schutzanstrich oder ohne Legierung mit anderen, teureren Metallen rostet es, d.h. der Sauerstoff der Luft oxidiert das feste metallische Eisen in nasser Umgebung fortschreitend zu bröseligen, wasserhaltigen Oxiden, wobei - chemisch gesehen - das nullwertige Metall dreiwertig positiv wird. Doch auch unter Ausschluß von Sauerstoff ist Eisen nicht beliebig beständig, sondern wird von Wasser allein angegriffen; dabei entstehen flockige Formen des zweiwertig positiven Eisens und Wasserstoffgas. Zum Glück ist diese Korrosion unter Luftausschluß - im Vergleich zum Rosten an der Luft - sehr langsam. Deshalb hat man auch lange Zeit z.B. für Heizungsrohre normales Eisen verwendet. Solange sie innen mit Wasser gefüllt und luftfrei blieben, trat meist über Jahrzehnte kein nennenswerter Korrosionsschaden auf.

Bei der Auflösung des Eisens, ob mit oder ohne Sauerstoff, handelt es sich um sogenannte elektrochemische Prozesse, d.h. die chemischen Reaktionen sind mit dem Fließen elektrischer Ströme verbunden, etwa wie in einer kurzgeschlossenen Batterie. Da mag es zunächst überraschen, daß auch Mikroorganismen, also kleinste einzellige Lebewesen, bei der Eisenkorrosion ein Rolle spielen können. Tatsächlich weiß man aber schon seit mehr als siebzig Jahren, daß die sonst erstaunlich lange Haltbarkeit von Eisen in luftfreiem Wasser durch bestimmte Bakterien dramatisch verkürzt werden kann. Überhaupt verfügen diverse Mikroorganismen-Arten über Mechanismen, etliche harte Materialien wie Kalksandstein oder die Substanz unserer Zähne aufzulösen. Während die Auflösung letzterer Materialien relativ einfach allein durch Einwirkung ohne Beteiligung von elektrischen Strömen erklärt werden kann, ist die Auflösung von Eisen durch Mikroorganismen ein komplexer elektrochemischer Prozeß. Dieser macht sich nicht so sehr als flächige Korrosion sondern eher als Lochfraß bemerkbar, z.B. in Pipelines, und kann kostspielige Schäden verursachen. Hauptverursacher sind sogenannte sulfatreduzierende Bakterien. Sie sind überall in Gewässern verbreitet und können aber weder Mensch noch Tier noch Pflanze infizieren. Bei diesen Bakterien gibt es genau genommen gleich zwei Korrosionsmechanismen:


Der eine Korrosionsmechanismus ist offensichtlich: Diese Bakterien leben davon, daß sie, wie der Name sagt, das harmlose, in natürlichen Wässern häufige Sulfat (in ungelöster Form z.B. als Gips bekannt) zu Schwefelwasserstoff reduzieren, einer faulig riechenden, aggressiven und giftigen Substanz. Bei Arbeiten in schlecht belüfteten Abwassersystemen wird dieser Schwefelwasserstoff zu Recht gefürchtet. Als Reduktionsmittel für die Umwandlung von Sulfat in Schwefelwasserstoff dienen diesen Bakterien Produkte aus natürlichen Verwesungsprozessen, z.B. im häuslichen Abwässer, die dabei zu Kohlendioxid oxidiert werden. Der Schwefelwasserstoff greift dann das Eisen an, wobei sich pechschwarze Reaktionsprodukte bilden.

Der andere Korrosionsmechanismus ist weniger klar, obwohl schon um 1930 Modellvorstellungen dazu entwickelt wurden. Sulfatreduzierende Bakterien verwenden nämlich auch Wasserstoffgas, um Sulfat zu reduzieren. Weil sich auf Eisen in Wasser langsam Wasserstoffgas, oft als "kathodischer Wasserstoff" bezeichnet, als Produkt bildet, wurde lange angenommen, daß dessen Verbrauch durch die sulfatreduzierenden Bakterien die Auflösung des Metalls im Wasser beschleunigt. Ein solches Prinzip ist aus der Chemie wohlbekannt: Wird das Produkt aus einer antriebsschwachen chemischen Reaktion in einer zweiten, sich anschließenden Reaktion gleich weiter verbraucht, kommt die erste Reaktion auf Touren. Im Falle der Biokorrosion von Eisen ist jedoch diese verlockende Vorstellung offensichtlich nicht haltbar. Am Max-Planck-Institut für marine Mikrobiologie, Bremen, wurden in Zusammenarbeit mit dem Materialprüfungsamt in Bremen und dem Max-Planck-Institut für Eisenforschung, Düsseldorf, Bakterien entdeckt, welche Eisen deutlich schneller korrodieren, als es durch Verbrauch von Wasserstoffgas jemals möglich wäre. Alles spricht dafür, daß sie im engen Kontakt mit dem Eisen diesem direkt Elektronen entziehen und so gewissermaßen den Umweg über "kathodischen Wasserstoff" umgehen. Und Elektronenentzug aus Eisen bedeutet Korrosion. Wie ein Elektronenfluß über die winzig kurze, aber dennoch über eine "Stomleitung" zu überbrückende Strecke zwischen Eisen und Bakterienzellen zustande kommt, ist noch unbekannt. Versteht man erst einmal deren Biochemie, wird man auch gezielter forschen können, um Schutzmaßnahmen zu entwickeln.

Man darf annehmen, daß die neu entdeckten Bakterien eine wichtige, aber bisher übersehene Rolle bei der biologischen Eisenzerstörung spielen. Das Ausgangsexperiment für das Aufspüren dieser Bakterien war recht einfach: Zunächst wurden kleine Eisenstücke in Meeresschlamm in sauerstofffreien Flaschen gesteckt. Nach mehreren Wochen wurden die Bakterien, die auf dem allmählich dahinschwindenden Metall wuchsen, analysiert. Die eigentlich korrosiven Arten erwiesen sich dabei allerdings als schwieriger zu isolieren als begleitende Arten. Isolierung und experimentelle Untersuchung in Reinkulturen sind, wie schon zu Robert Kochs Zeiten, für eine kausale Analyse der Wirkung von Bakterien unabdingbar. Solche züchterischen Verfahren gehen heute Hand in Hand mit verfeinerten molekularbiologischen und mikroskopischen Analysen. Ohne diese Methodenkombination könnten die sehr diversen Bakterien als sehr kleine Organismen mit nur wenigen Tausendstel Millimetern Durchmesser und einfachen Zellformen kaum voneinander unterschieden und untersucht werden.

Dr. Manfred Schloesser | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Berichte zu: Bakterium Eisen Metall Sauerstoff Schwefelwasserstoff Wasserstoffgas

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie