Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungsbiologie: Brückenschlag zwischen Kontrollmechanismen der Embryogenese und des Zellzyklus

19.02.2004


Bei der Entwicklung eines Embryos aus der befruchteten Eizelle müssen viele Prozesse zeitlich koordiniert ablaufen, damit die richtigen Zellen zum richtigen Zeitpunkt an der richtigen Stelle sind. Wissenschaftler am Max-Planck-Institut für biophysikalische Chemie in Göttingen haben jetzt ein Protein entdeckt, das sowohl die Zellteilung im Zellzyklus als auch die Anlage der Wirbelsäule im Embryo beeinflusst. Mit dieser Doppelfunktion stellt es damit einen wirksamen Kontrollmechanismus dar, mit dem beide Prozesse bei der Entwicklung von Lebewesen koordiniert werden können. (Nature 19. Februar 2004)



Hox-Gen-Kluster in Fliege, Maus und Mensch. Die Farbgebung weist auf die Kolinearität zwischen den Körperachsen und den Gen-Klustern hin. (Quelle: GEO-Grafik, H. Blanck)



Die Körperachse eines Säugetieres, auch des Menschen, wird nach einem immer gleichen Muster angelegt. Dies zeigt sich besonders deutlich in dem Aufbau der Wirbelsäule aus vier Bereichen, der Hals-, Brust, Lenden- und Kreuzbeinregion, die wiederum unterteilt sind in einzelne Segmente, die Wirbel. Segmentierung ist ein Bauprinzip, das sich in vielen Gruppen des Tierreichs, von Wirbeltieren bis zu Insekten und Ringelwürmern, wiederholt hat. Um einzelnen Regionen, Segmenten oder vielleicht sogar jeder einzelnen Zelle eine eigene Identität zuzuweisen, scheinen alle Tiere die gleiche Gengruppe einzusetzen, die sogenannten Hox-Gene. Hox-Gene treten im Chromosom in Klustern auf, wobei jeweils etwa zehn Gene hintereinander aufgereiht sind. Diese Aufreihung reflektiert die Aktivierung der Hox-Gene in der Embryonalentwicklung: Während die Körperachse von vorne nach hinten angelegt wird, wird ein Hox-Gen nach dem anderen aktiviert. In Säugetieren, wie Maus oder Mensch, sorgt das sukzessive Anschalten von insgesamt 39 Hox-Genen dafür, dass verschiedene Kombinationen von Hox-Proteinen verschiedene Segmente, die Vorläufer der Wirbel, definieren. Falsche Aktivierung führt zu falschen Identitäten und kann sich z.B. in der Entstehung von Kopfwirbeln, Halsrippen, in Veränderungen am Brustbein oder in der Lendenregion manifestieren. Dieses Prinzip eines "Hox Codes" wurde bereits Anfang der neunziger Jahre am Max-Planck-Institut für biophysikalische Chemie in Göttingen gefunden.



Bei Ausbildung der Körperachse wächst ein Embryo durch Wachstumszonen am hinteren Körperende, in denen eine extensive Zellteilung abläuft. Den neuen Zellen wird über verschiedene Signale eine Position im Embryo zugewiesen, wo sie schließlich nach und nach zu ihrer endgültigen Funktion ausdifferenzieren können. So wird z.B. aus einer nur teilweise festgelegten Vorläuferzelle in der Wachstumszone eine Gruppe von verknöchernden Zellen in einem Brustwirbel. Teilt sich eine Zelle in der Wachstumszone zu schnell oder zu langsam werden Zellen mit einem falschen Hox-Code produziert, die nicht in das komplizierte Gefüge von embryonalen Signalen und Abläufen passsen: Es kommt zu Fehlbildungen. Damit dies vermieden wird, muss es Mechanismen und Moleküle geben, die eine Koordination zwischen dem Zellzyklus und den Hox-Genen vermitteln.

Im Labor von Prof. Michael Kessel am Max-Planck-Institut für biophysikalische Chemie haben Lingfei Luo und seine Kollegen ein Protein identifiziert, das diese Rolle übernehmen kann. Es heißt "Geminin" - bereits der Name weist auf eine Zwillingsfunktion hin. Geminin ist ein Mitglied von verschiedenen Multiproteinkomplexen, die bei der Regulation von Zellzyklus-Genen auf der einen Seite und von Hox-Genen auf der anderen wichtige Rollen spielen. Wenn Geminin mit Hox-Genen interagiert, hemmt es ihre Funktion bei der Definition der Körperachse. Wenn es mit der Maschinerie des Zellzyklus, insbesondere der DNA-Replikation, interagiert, reguliert es den geordneten Verlauf der Zellteilung. Mit Geminin als gemeinsamem Regulator ist eine Koordination der beiden Prozesse möglich.

Die Göttinger Forscher wandten für ihre Untersuchungen eine Reihe von biochemischen Methoden an, um die Eigenschaften von Geminin im Reagenzglas zu erkunden. Mit diesen Erkenntnissen haben sie dann das Zusammenspiel von Hox-Genen und Zellzyklus direkt im Embryo des Huhns, im bebrüteten Ei, untersucht. So gelang ihnen ein Brückenschlag zwischen Kontrollmechanismen der Embryogenese und des Zellzyklus. Es ist nicht unwahrscheinlich, dass Geminin auch andere Entwicklungsprozesse koordiniert und so in der Forschung für weitere Brückenschläge sorgen könnte.

Weitere Informationen bei:

Prof. Dr. Michael Kessel
Max-Planck-Institut für biophysikalische Chemie
Am Fassberg 11, 37077 Göttingen
Telefon: 0551 / 201-1560, Fax: -1504
e-mail: mkessel1@gwdg.de

Dr. Christoph R. Nothdurft | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/PR/04_02
http://www.mpibpc.mpg.de

Weitere Berichte zu: Embryo Geminin Hox-Gen Körperachse Zellzyklus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics