Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungsbiologie: Brückenschlag zwischen Kontrollmechanismen der Embryogenese und des Zellzyklus

19.02.2004


Bei der Entwicklung eines Embryos aus der befruchteten Eizelle müssen viele Prozesse zeitlich koordiniert ablaufen, damit die richtigen Zellen zum richtigen Zeitpunkt an der richtigen Stelle sind. Wissenschaftler am Max-Planck-Institut für biophysikalische Chemie in Göttingen haben jetzt ein Protein entdeckt, das sowohl die Zellteilung im Zellzyklus als auch die Anlage der Wirbelsäule im Embryo beeinflusst. Mit dieser Doppelfunktion stellt es damit einen wirksamen Kontrollmechanismus dar, mit dem beide Prozesse bei der Entwicklung von Lebewesen koordiniert werden können. (Nature 19. Februar 2004)



Hox-Gen-Kluster in Fliege, Maus und Mensch. Die Farbgebung weist auf die Kolinearität zwischen den Körperachsen und den Gen-Klustern hin. (Quelle: GEO-Grafik, H. Blanck)



Die Körperachse eines Säugetieres, auch des Menschen, wird nach einem immer gleichen Muster angelegt. Dies zeigt sich besonders deutlich in dem Aufbau der Wirbelsäule aus vier Bereichen, der Hals-, Brust, Lenden- und Kreuzbeinregion, die wiederum unterteilt sind in einzelne Segmente, die Wirbel. Segmentierung ist ein Bauprinzip, das sich in vielen Gruppen des Tierreichs, von Wirbeltieren bis zu Insekten und Ringelwürmern, wiederholt hat. Um einzelnen Regionen, Segmenten oder vielleicht sogar jeder einzelnen Zelle eine eigene Identität zuzuweisen, scheinen alle Tiere die gleiche Gengruppe einzusetzen, die sogenannten Hox-Gene. Hox-Gene treten im Chromosom in Klustern auf, wobei jeweils etwa zehn Gene hintereinander aufgereiht sind. Diese Aufreihung reflektiert die Aktivierung der Hox-Gene in der Embryonalentwicklung: Während die Körperachse von vorne nach hinten angelegt wird, wird ein Hox-Gen nach dem anderen aktiviert. In Säugetieren, wie Maus oder Mensch, sorgt das sukzessive Anschalten von insgesamt 39 Hox-Genen dafür, dass verschiedene Kombinationen von Hox-Proteinen verschiedene Segmente, die Vorläufer der Wirbel, definieren. Falsche Aktivierung führt zu falschen Identitäten und kann sich z.B. in der Entstehung von Kopfwirbeln, Halsrippen, in Veränderungen am Brustbein oder in der Lendenregion manifestieren. Dieses Prinzip eines "Hox Codes" wurde bereits Anfang der neunziger Jahre am Max-Planck-Institut für biophysikalische Chemie in Göttingen gefunden.



Bei Ausbildung der Körperachse wächst ein Embryo durch Wachstumszonen am hinteren Körperende, in denen eine extensive Zellteilung abläuft. Den neuen Zellen wird über verschiedene Signale eine Position im Embryo zugewiesen, wo sie schließlich nach und nach zu ihrer endgültigen Funktion ausdifferenzieren können. So wird z.B. aus einer nur teilweise festgelegten Vorläuferzelle in der Wachstumszone eine Gruppe von verknöchernden Zellen in einem Brustwirbel. Teilt sich eine Zelle in der Wachstumszone zu schnell oder zu langsam werden Zellen mit einem falschen Hox-Code produziert, die nicht in das komplizierte Gefüge von embryonalen Signalen und Abläufen passsen: Es kommt zu Fehlbildungen. Damit dies vermieden wird, muss es Mechanismen und Moleküle geben, die eine Koordination zwischen dem Zellzyklus und den Hox-Genen vermitteln.

Im Labor von Prof. Michael Kessel am Max-Planck-Institut für biophysikalische Chemie haben Lingfei Luo und seine Kollegen ein Protein identifiziert, das diese Rolle übernehmen kann. Es heißt "Geminin" - bereits der Name weist auf eine Zwillingsfunktion hin. Geminin ist ein Mitglied von verschiedenen Multiproteinkomplexen, die bei der Regulation von Zellzyklus-Genen auf der einen Seite und von Hox-Genen auf der anderen wichtige Rollen spielen. Wenn Geminin mit Hox-Genen interagiert, hemmt es ihre Funktion bei der Definition der Körperachse. Wenn es mit der Maschinerie des Zellzyklus, insbesondere der DNA-Replikation, interagiert, reguliert es den geordneten Verlauf der Zellteilung. Mit Geminin als gemeinsamem Regulator ist eine Koordination der beiden Prozesse möglich.

Die Göttinger Forscher wandten für ihre Untersuchungen eine Reihe von biochemischen Methoden an, um die Eigenschaften von Geminin im Reagenzglas zu erkunden. Mit diesen Erkenntnissen haben sie dann das Zusammenspiel von Hox-Genen und Zellzyklus direkt im Embryo des Huhns, im bebrüteten Ei, untersucht. So gelang ihnen ein Brückenschlag zwischen Kontrollmechanismen der Embryogenese und des Zellzyklus. Es ist nicht unwahrscheinlich, dass Geminin auch andere Entwicklungsprozesse koordiniert und so in der Forschung für weitere Brückenschläge sorgen könnte.

Weitere Informationen bei:

Prof. Dr. Michael Kessel
Max-Planck-Institut für biophysikalische Chemie
Am Fassberg 11, 37077 Göttingen
Telefon: 0551 / 201-1560, Fax: -1504
e-mail: mkessel1@gwdg.de

Dr. Christoph R. Nothdurft | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/PR/04_02
http://www.mpibpc.mpg.de

Weitere Berichte zu: Embryo Geminin Hox-Gen Körperachse Zellzyklus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit